Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 288(19): 13695-703, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23508957

RESUMO

BACKGROUND: Human topoisomerase IIα unlinks catenated chromosomes and preferentially relaxes positive supercoils. RESULTS: Supercoil chirality, twist density, and tension determine topoisomerase IIα relaxation rate and processivity. CONCLUSION: Strand passage rate is determined by the efficiency of transfer segment capture that is modulated by the topoisomerase C-terminal domains. SIGNIFICANCE: Single-molecule measurements reveal the mechanism of chiral discrimination and tension dependence of supercoil relaxation by human topoisomerase IIα. Type IIA topoisomerases (Topo IIA) are essential enzymes that relax DNA supercoils and remove links joining replicated chromosomes. Human topoisomerase IIα (htopo IIα), one of two human isoforms, preferentially relaxes positive supercoils, a feature shared with Escherichia coli topoisomerase IV (Topo IV). The mechanistic basis of this chiral discrimination remains unresolved. To address this important issue, we measured the relaxation of individual supercoiled and "braided" DNA molecules by htopo IIα using a magnetic tweezers-based single-molecule assay. Our study confirmed the chiral discrimination activity of htopo IIα and revealed that the strand passage rate depends on DNA twist, tension on the DNA, and the C-terminal domain (CTD). Similar to Topo IV, chiral discrimination by htopo IIα results from chiral interactions of the CTDs with DNA writhe. In contrast to Topo IV, however, these interactions lead to chiral differences in relaxation rate rather than processivity. Increasing tension or twist disrupts the CTD-DNA interactions with a subsequent loss of chiral discrimination. Together, these results suggest that transfer segment (T-segment) capture is the rate-limiting step in the strand passage cycle. We propose a model for T-segment capture that provides a mechanistic basis for chiral discrimination and provides a coherent explanation for the effects of DNA twist and tension on eukaryotic type IIA topoisomerases.


Assuntos
Antígenos de Neoplasias/química , DNA Topoisomerases Tipo II/química , Proteínas de Ligação a DNA/química , Antígenos de Neoplasias/genética , Replicação do DNA , DNA Topoisomerases Tipo II/genética , DNA Super-Helicoidal/química , Proteínas de Ligação a DNA/genética , Humanos , Isomerismo , Cinética , Modelos Moleculares , Estrutura Terciária de Proteína , Deleção de Sequência , Especificidade por Substrato
2.
Biochemistry ; 50(15): 3240-9, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21413765

RESUMO

F14512 is a novel etoposide derivative that contains a spermine in place of the C4 glycosidic moiety. The drug was designed to exploit the polyamine transport system that is upregulated in some cancers. However, a preliminary study suggests that it is also a more efficacious topoisomerase II poison than etoposide [Barret et al. (2008) Cancer Res. 68, 9845-9853]. Therefore, we undertook a more complete study of the actions of F14512 against human type II topoisomerases. As determined by saturation transfer difference (1)H NMR spectroscopy, contacts between F14512 and human topoisomerase IIα in the binary enzyme-drug complex are similar to those of etoposide. Although the spermine of F14512 does not interact with the enzyme, it converts the drug to a DNA binder [Barret et al. (2008)]. Consequently, the influence of the C4 spermine on drug activity was assessed. F14512 is a highly active topoisomerase II poison and stimulates DNA cleavage mediated by human topoisomerase IIα or topoisomerase IIß. The drug is more potent and efficacious than etoposide or TOP-53, an etoposide derivative that contains a C4 aminoalkyl group that strengthens drug-enzyme binding. Unlike the other drugs, F14512 maintains robust activity in the absence of ATP. The enhanced activity of F14512 correlates with a tighter binding and an increased stability of the ternary topoisomerase II-drug-DNA complex. The spermine-drug core linkage is critical for these attributes. These findings demonstrate the utility of a C4 DNA binding group and provide a rational basis for the development of novel and more active etoposide-based topoisomerase II poisons.


Assuntos
Antígenos de Neoplasias/metabolismo , Clivagem do DNA/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Etoposídeo/análogos & derivados , Podofilotoxina/análogos & derivados , Espermina/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Estabilidade de Medicamentos , Humanos , Podofilotoxina/química , Podofilotoxina/metabolismo , Podofilotoxina/farmacologia , Ligação Proteica , Relação Estrutura-Atividade
3.
Nucleic Acids Res ; 39(3): 1014-22, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20855291

RESUMO

Human topoisomerase I plays an important role in removing positive DNA supercoils that accumulate ahead of replication forks. It also is the target for camptothecin-based anticancer drugs that act by increasing levels of topoisomerase I-mediated DNA scission. Evidence suggests that cleavage events most likely to generate permanent genomic damage are those that occur ahead of DNA tracking systems. Therefore, it is important to characterize the ability of topoisomerase I to cleave positively supercoiled DNA. Results confirm that the human enzyme maintains higher levels of cleavage with positively as opposed to negatively supercoiled substrates in the absence or presence of anticancer drugs. Enhanced drug efficacy on positively supercoiled DNA is due primarily to an increase in baseline levels of cleavage. Sites of topoisomerase I-mediated DNA cleavage do not appear to be affected by supercoil geometry. However, rates of ligation are slower with positively supercoiled substrates. Finally, intercalators enhance topoisomerase I-mediated cleavage of negatively supercoiled substrates but not positively supercoiled or linear DNA. We suggest that these compounds act by altering the perceived topological state of the double helix, making underwound DNA appear to be overwound to the enzyme, and propose that these compounds be referred to as 'topological poisons of topoisomerase I'.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA Super-Helicoidal/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Clivagem do DNA , DNA Super-Helicoidal/química , Humanos , Substâncias Intercalantes/farmacologia , Inibidores da Topoisomerase I/farmacologia
4.
Nucleic Acids Res ; 38(17): 5681-91, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20457750

RESUMO

Metnase is a human protein with methylase (SET) and nuclease domains that is widely expressed, especially in proliferating tissues. Metnase promotes non-homologous end-joining (NHEJ), and knockdown causes mild hypersensitivity to ionizing radiation. Metnase also promotes plasmid and viral DNA integration, and topoisomerase IIα (TopoIIα)-dependent chromosome decatenation. NHEJ factors have been implicated in the replication stress response, and TopoIIα has been proposed to relax positive supercoils in front of replication forks. Here we show that Metnase promotes cell proliferation, but it does not alter cell cycle distributions, or replication fork progression. However, Metnase knockdown sensitizes cells to replication stress and confers a marked defect in restart of stalled replication forks. Metnase promotes resolution of phosphorylated histone H2AX, a marker of DNA double-strand breaks at collapsed forks, and it co-immunoprecipitates with PCNA and RAD9, a member of the PCNA-like RAD9-HUS1-RAD1 intra-S checkpoint complex. Metnase also promotes TopoIIα-mediated relaxation of positively supercoiled DNA. Metnase is not required for RAD51 focus formation after replication stress, but Metnase knockdown cells show increased RAD51 foci in the presence or absence of replication stress. These results establish Metnase as a key factor that promotes restart of stalled replication forks, and implicate Metnase in the repair of collapsed forks.


Assuntos
Reparo do DNA , Replicação do DNA , Histona-Lisina N-Metiltransferase/fisiologia , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/isolamento & purificação , Proliferação de Células , Sobrevivência Celular , DNA Topoisomerases Tipo II/metabolismo , DNA Super-Helicoidal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/isolamento & purificação , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Imunoprecipitação , Antígeno Nuclear de Célula em Proliferação/isolamento & purificação , Rad51 Recombinase/análise
5.
Biochemistry ; 47(50): 13169-78, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19053267

RESUMO

Human topoisomerase IIalpha, but not topoisomerase IIbeta, can sense the geometry of DNA during relaxation and removes positive supercoils >10-fold faster than it does negative superhelical twists. In contrast, both isoforms maintain lower levels of DNA cleavage intermediates with positively supercoiled substrates. Since topoisomerase IIalpha and IIbeta differ primarily in their C-terminal domains (CTD), this portion of the protein may play a role in sensing DNA geometry. Therefore, to more fully assess the importance of the topoisomerase IIalpha CTD in the recognition of DNA topology, hTop2alphaDelta1175, a mutant human enzyme that lacks its CTD, was examined. The mutant enzyme relaxed negative and positive supercoils at similar rates but still maintained lower levels of cleavage complexes with positively supercoiled DNA. Furthermore, when the CTD of topoisomerase IIbeta was replaced with that of the alpha isoform, the resulting enzyme preferentially relaxed positively supercoiled substrates. In contrast, a chimeric topoisomerase IIalpha that carried the CTD of the beta isoform lost its ability to recognize the geometry of DNA supercoils during relaxation. These findings demonstrate that human topoisomerase IIalpha recognizes DNA geometry in a bimodal fashion, with the ability to preferentially relax positive DNA supercoils residing in the CTD. Finally, results with a series of human topoisomerase IIalpha mutants suggest that clusters of positively charged amino acid residues in the CTD are required for the enzyme to distinguish supercoil geometry during DNA relaxation and that deletion of even the most C-terminal cluster abrogates this recognition.


Assuntos
Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Sequência de Aminoácidos , Antígenos de Neoplasias/genética , Sítios de Ligação/genética , Clivagem do DNA , DNA Topoisomerases Tipo II/genética , DNA Super-Helicoidal/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína/genética , Deleção de Sequência , Inibidores da Topoisomerase II
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA