Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(5): 1125-1130, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38712757

RESUMO

There remains a critical need for new antibiotics against multi-drug-resistant Gram-negative bacteria, a major global threat that continues to impact mortality rates. Lipoprotein signal peptidase II is an essential enzyme in the lipoprotein biosynthetic pathway of Gram-negative bacteria, making it an attractive target for antibacterial drug discovery. Although natural inhibitors of LspA have been identified, such as the cyclic depsipeptide globomycin, poor stability and production difficulties limit their use in a clinical setting. We harness computational design to generate stable de novo cyclic peptide analogues of globomycin. Only 12 peptides needed to be synthesized and tested to yield potent inhibitors, avoiding costly preparation of large libraries and screening campaigns. The most potent analogues showed comparable or better antimicrobial activity than globomycin in microdilution assays against ESKAPE-E pathogens. This work highlights computational design as a general strategy to combat antibiotic resistance.


Assuntos
Antibacterianos , Desenho de Fármacos , Peptídeos Cíclicos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Testes de Sensibilidade Microbiana , Depsipeptídeos/farmacologia , Depsipeptídeos/química , Lipoproteínas/química , Lipoproteínas/metabolismo , Lipoproteínas/farmacologia , Lipoproteínas/antagonistas & inibidores , Proteínas de Bactérias , Peptídeos , Ácido Aspártico Endopeptidases
2.
J Biol Chem ; 299(3): 102936, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702253

RESUMO

Staphylococcus aureus and Staphylococcus epidermidis are frequently associated with medical device infections that involve establishment of a bacterial biofilm on the device surface. Staphylococcal surface proteins Aap, SasG, and Pls are members of the Periscope Protein class and have been implicated in biofilm formation and host colonization; they comprise a repetitive region ("B region") and an N-terminal host colonization domain within the "A region," predicted to be a lectin domain. Repetitive E-G5 domains (as found in Aap, SasG, and Pls) form elongated "stalks" that would vary in length with repeat number, resulting in projection of the N-terminal A domain variable distances from the bacterial cell surface. Here, we present the structures of the lectin domains within A regions of SasG, Aap, and Pls and a structure of the Aap lectin domain attached to contiguous E-G5 repeats, suggesting the lectin domains will sit at the tip of the variable length rod. We demonstrate that these isolated domains (Aap, SasG) are sufficient to bind to human host desquamated nasal epithelial cells. Previously, proteolytic cleavage or a deletion within the A domain had been reported to induce biofilm formation; the structures suggest a potential link between these observations. Intriguingly, while the Aap, SasG, and Pls lectin domains bind a metal ion, they lack the nonproline cis peptide bond thought to be key for carbohydrate binding by the lectin fold. This suggestion of noncanonical ligand binding should be a key consideration when investigating the host cell interactions of these bacterial surface proteins.


Assuntos
Proteínas de Bactérias , Modelos Moleculares , Domínios Proteicos , Staphylococcus aureus , Humanos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lectinas/química , Lectinas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/química , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo , Domínios Proteicos/fisiologia , Estrutura Terciária de Proteína , Ligação Proteica , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli , Células Epiteliais/microbiologia
3.
J Mater Chem B ; 9(16): 3544-3553, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909741

RESUMO

Chirality is a fundamental phenomenon in biological systems, since most of the biomolecules and biological components and species are chiral and therefore recognize and respond differently depending on the enantiomer present. With increasing research into the use of nanomaterials for biomedical purposes, it is essential to understand the role that chirality of nanoparticles plays at the cellular level. Here, the chiral cysteine functionalization of mesoporous silica nanoparticles has been shown to broadly affect its interaction with U87 MG human glioblastoma cell, healthy human fibroblast (GM08680) and methicillin-resistant S. aureus bacteria. We believe that this research is important to further advancement of nano-biotechnology.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Cisteína/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanopartículas/química , Dióxido de Silício/farmacologia , Antibacterianos/química , Antineoplásicos/química , Biofilmes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cisteína/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Tamanho da Partícula , Porosidade , Dióxido de Silício/química , Estereoisomerismo , Propriedades de Superfície
4.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33361150

RESUMO

Staphylococcus aureus colonizes the skin of the majority of patients with atopic dermatitis (AD), and its presence increases disease severity. Adhesion of S. aureus to corneocytes in the stratum corneum is a key initial event in colonization, but the bacterial and host factors contributing to this process have not been defined. Here, we show that S. aureus interacts with the host protein corneodesmosin. Corneodesmosin is aberrantly displayed on the tips of villus-like projections that occur on the surface of AD corneocytes as a result of low levels of skin humectants known as natural moisturizing factor (NMF). An S. aureus mutant deficient in fibronectin binding protein B (FnBPB) and clumping factor B (ClfB) did not bind to corneodesmosin in vitro. Using surface plasmon resonance, we found that FnBPB and ClfB proteins bound with similar affinities. The S. aureus binding site was localized to the N-terminal glycine-serine-rich region of corneodesmosin. Atomic force microscopy showed that the N-terminal region was present on corneocytes containing low levels of NMF and that blocking it with an antibody inhibited binding of individual S. aureus cells to corneocytes. Finally, we found that S. aureus mutants deficient in FnBPB or ClfB have a reduced ability to adhere to low-NMF corneocytes from patients. In summary, we show that FnBPB and ClfB interact with the accessible N-terminal region of corneodesmosin on AD corneocytes, allowing S. aureus to take advantage of the aberrant display of corneodesmosin that accompanies low NMF in AD. This interaction facilitates the characteristic strong binding of S. aureus to AD corneocytes.


Assuntos
Dermatite Atópica/microbiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Staphylococcus aureus/metabolismo , Adesinas Bacterianas/metabolismo , Aderência Bacteriana/fisiologia , Coagulase/metabolismo , Dermatite Atópica/metabolismo , Epiderme , Células Epiteliais/metabolismo , Humanos , Microscopia de Força Atômica , Pele/metabolismo , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade
5.
Nat Commun ; 11(1): 140, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919415

RESUMO

Antimicrobial resistance is a major global threat that calls for new antibiotics. Globomycin and myxovirescin are two natural antibiotics that target the lipoprotein-processing enzyme, LspA, thereby compromising the integrity of the bacterial cell envelope. As part of a project aimed at understanding their mechanism of action and for drug development, we provide high-resolution crystal structures of the enzyme from the human pathogen methicillin-resistant Staphylococcus aureus (MRSA) complexed with globomycin and with myxovirescin. Our results reveal an instance of convergent evolution. The two antibiotics possess different molecular structures. Yet, they appear to inhibit identically as non-cleavable tetrahedral intermediate analogs. Remarkably, the two antibiotics superpose along nineteen contiguous atoms that interact similarly with LspA. This 19-atom motif recapitulates a part of the substrate lipoprotein in its proposed binding mode. Incorporating this motif into a scaffold with suitable pharmacokinetic properties should enable the development of effective antibiotics with built-in resistance hardiness.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Proteínas de Bactérias/metabolismo , Macrolídeos/metabolismo , Staphylococcus aureus Resistente à Meticilina/enzimologia , Peptídeos/metabolismo , Sítios de Ligação/fisiologia , Membrana Celular/efeitos dos fármacos , Cristalografia por Raios X , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/fisiologia , Macrolídeos/farmacologia , Peptídeos/farmacologia , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína
6.
Environ Microbiol ; 20(4): 1576-1589, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29521441

RESUMO

Excess copper is highly toxic and forms part of the host innate immune system's antibacterial arsenal, accumulating at sites of infection and acting within macrophages to kill engulfed pathogens. We show for the first time that a novel, horizontally gene transferred copper resistance locus (copXL), uniquely associated with the SCCmec elements of the highly virulent, epidemic, community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) USA300, confers copper hyper-resistance. These genes are additional to existing core genome copper resistance mechanisms, and are not found in typical S. aureus lineages, but are increasingly identified in emerging pathogenic isolates. Our data show that CopX, a putative P1B-3 -ATPase efflux transporter, and CopL, a novel lipoprotein, confer copper hyper-resistance compared to typical S. aureus strains. The copXL genes form an operon that is tightly repressed in low copper environments by the copper regulator CsoR. Significantly, CopX and CopL are important for S. aureus USA300 intracellular survival within macrophages. Therefore, the emergence of new S. aureus clones with the copXL locus has significant implications for public health because these genes confer increased resistance to antibacterial copper toxicity, enhancing bacterial fitness by altering S. aureus interaction with innate immunity.


Assuntos
Antibacterianos/toxicidade , Cobre/toxicidade , Farmacorresistência Bacteriana/genética , Macrófagos/microbiologia , Proteínas de Membrana Transportadoras/genética , Staphylococcus aureus Resistente à Meticilina , Transferência Genética Horizontal/genética , Humanos , Imunidade Inata/imunologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Óperon , Infecções Estafilocócicas/microbiologia
7.
mBio ; 8(6)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208742

RESUMO

Bacterial pathogens that colonize host surfaces are subjected to physical stresses such as fluid flow and cell surface contacts. How bacteria respond to such mechanical cues is an important yet poorly understood issue. Staphylococcus aureus uses a repertoire of surface proteins to resist shear stress during the colonization of host tissues, but whether their adhesive functions can be modulated by physical forces is not known. Here, we show that the interaction of S. aureus clumping factor B (ClfB) with the squamous epithelial cell envelope protein loricrin is enhanced by mechanical force. We find that ClfB mediates S. aureus adhesion to loricrin through weak and strong molecular interactions both in a laboratory strain and in a clinical isolate. Strong forces (~1,500 pN), among the strongest measured for a receptor-ligand bond, are consistent with a high-affinity "dock, lock, and latch" binding mechanism involving dynamic conformational changes in the adhesin. Notably, we demonstrate that the strength of the ClfB-loricrin bond increases as mechanical force is applied. These findings favor a two-state model whereby bacterial adhesion to loricrin is enhanced through force-induced conformational changes in the ClfB molecule, from a weakly binding folded state to a strongly binding extended state. This force-sensitive mechanism may provide S. aureus with a means to finely tune its adhesive properties during the colonization of host surfaces, helping cells to attach firmly under high shear stress and to detach and spread under low shear stress.IMPORTANCEStaphylococcus aureus colonizes the human skin and the nose and can cause various disorders, including superficial skin lesions and invasive infections. During nasal colonization, the S. aureus surface protein clumping factor B (ClfB) binds to the squamous epithelial cell envelope protein loricrin, but the molecular interactions involved are poorly understood. Here, we unravel the molecular mechanism guiding the ClfB-loricrin interaction. We show that the ClfB-loricrin bond is remarkably strong, consistent with a high-affinity "dock, lock, and latch" binding mechanism. We discover that the ClfB-loricrin interaction is enhanced under tensile loading, thus providing evidence that the function of an S. aureus surface protein can be activated by physical stress.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Staphylococcus aureus/fisiologia , Estresse Mecânico , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Microscopia de Força Atômica , Mutação , Ligação Proteica , Domínios Proteicos , Análise de Célula Única , Pele/citologia , Pele/microbiologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/citologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
8.
Bioconjug Chem ; 28(6): 1684-1692, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28489355

RESUMO

Numerous naturally occurring toxins can perturb biological systems when they invade susceptible cells. Coupling of pertinent targeting ligands to the active domains of such proteins provides a strategy for directing these to particular cellular populations implicated in disease. A novel approach described herein involved fusion of one mutated immunoglobulin G (IgG) binding moiety of staphylococcal protein A to the SNARE protease and translocation domain of botulinum neurotoxin A (BoNT/A). This chimera could be monovalently coupled to IgG or via its Fc region to recombinant targeting ligands. The utility of the resulting conjugates is demonstrated by the delivery of a SNARE protease into a cell line expressing tropomyosin receptor kinase A (TrkA) through coupling to anti-TrkA IgG or a fusion of Fc and nerve-growth factor. Thus, this is a versitile and innovative technology for conjugating toxins to diverse ligands for retargeted cell delivery of potential therapeutics.


Assuntos
Toxinas Botulínicas Tipo A/química , Imunoglobulina G/química , Proteínas SNARE/metabolismo , Sítios de Ligação , Sistemas de Liberação de Medicamentos , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G/metabolismo , Fator de Crescimento Neural/imunologia , Receptor trkA/imunologia , Vacinas
9.
Trends Microbiol ; 25(7): 512-514, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28495024

RESUMO

Live-cell nanoscopy has contributed significantly to assessing the inhibition of adhesion of uropathogenic Escherichia coli and Staphylococcus aureus by glycoconjugates and monoclonal antibodies, respectively, and of S. aureus surface attachment and cell-cell association by a synthetic peptide. This new technology shows promise for the development of antiadhesion therapies against bacterial pathogens.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Nanotecnologia/métodos , Infecções Estafilocócicas/terapia , Biofilmes/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/terapia , Peptídeos/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
10.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28373353

RESUMO

Staphylococcus aureus skin infection is a frequent and recurrent problem in children with the common inflammatory skin disease atopic dermatitis (AD). S. aureus colonizes the skin of the majority of children with AD and exacerbates the disease. The first step during colonization and infection is bacterial adhesion to the cornified envelope of corneocytes in the outer layer, the stratum corneum. Corneocytes from AD skin are structurally different from corneocytes from normal healthy skin. The objective of this study was to identify bacterial proteins that promote the adherence of S. aureus to AD corneocytes. S. aureus strains from clonal complexes 1 and 8 were more frequently isolated from infected AD skin than from the nasal cavity of healthy children. AD strains had increased ClfB ligand binding activity compared to normal nasal carriage strains. Adherence of single S. aureus bacteria to corneocytes from AD patients ex vivo was studied using atomic force microscopy. Bacteria expressing ClfB recognized ligands distributed over the entire corneocyte surface. The ability of an isogenic ClfB-deficient mutant to adhere to AD corneocytes compared to that of its parent clonal complex 1 clinical strain was greatly reduced. ClfB from clonal complex 1 strains had a slightly higher binding affinity for its ligand than ClfB from strains from other clonal complexes. Our results provide new insights into the first step in the establishment of S. aureus colonization in AD patients. ClfB is a key adhesion molecule for the interaction of S. aureus with AD corneocytes and represents a target for intervention.


Assuntos
Adesinas Bacterianas/metabolismo , Dermatite Atópica/microbiologia , Células Epiteliais/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Adesinas Bacterianas/genética , Aderência Bacteriana , Pré-Escolar , Feminino , Proteínas Filagrinas , Humanos , Masculino , Cavidade Nasal/microbiologia , Deleção de Sequência , Pele/citologia , Pele/microbiologia , Staphylococcus aureus/genética
11.
Proc Natl Acad Sci U S A ; 114(14): 3738-3743, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28320940

RESUMO

Staphylococcus aureus forms biofilms on indwelling medical devices using a variety of cell-surface proteins. There is growing evidence that specific homophilic interactions between these proteins represent an important mechanism of cell accumulation during biofilm formation, but the underlying molecular mechanisms are still not well-understood. Here we report the direct measurement of homophilic binding forces by the serine-aspartate repeat protein SdrC and their inhibition by a peptide. Using single-cell and single-molecule force measurements, we find that SdrC is engaged in low-affinity homophilic bonds that promote cell-cell adhesion. Low-affinity intercellular adhesion may play a role in favoring biofilm dynamics. We show that SdrC also mediates strong cellular interactions with hydrophobic surfaces, which are likely to be involved in the initial attachment to biomaterials, the first stage of biofilm formation. Furthermore, we demonstrate that a peptide derived from ß-neurexin is a powerful competitive inhibitor capable of efficiently blocking surface attachment, homophilic adhesion, and biofilm accumulation. Molecular modeling suggests that this blocking activity may originate from binding of the peptide to a sequence of SdrC involved in homophilic interactions. Our study opens up avenues for understanding the role of homophilic interactions in staphylococcal adhesion, and for the design of new molecules to prevent biofilm formation during infection.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Proteínas do Tecido Nervoso/química , Peptídeos/farmacologia , Staphylococcus aureus/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Peptídeos/química , Ligação Proteica , Análise de Célula Única
12.
Cell Host Microbe ; 20(1): 99-106, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27345697

RESUMO

Kupffer cells (KCs), the vast pool of intravascular macrophages in the liver, help to clear blood-borne pathogens. The mechanisms by which KCs capture circulating pathogens remain unknown. Here we use intra-vital imaging of mice infected with Staphylococcus aureus to directly visualize the dynamic process of bacterial capture in the liver. Circulating S. aureus were captured by KCs in a manner dependent on the macrophage complement receptor CRIg, but the process was independent of complement. CRIg bound Staphylococcus aureus specifically through recognition of lipoteichoic acid (LTA), but not cell-wall-anchored surface proteins or peptidoglycan. Blocking the recognition between CRIg and LTA in vivo diminished the bacterial capture in liver and led to systemic bacterial dissemination. All tested Gram-positive, but not Gram-negative, bacteria bound CRIg in a complement-independent manner. These findings reveal a pattern recognition role for CRIg in the direct capture of circulating Gram-positive bacteria from the bloodstream.


Assuntos
Células de Kupffer/imunologia , Lipopolissacarídeos/metabolismo , Fígado/imunologia , Receptores de Complemento/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Staphylococcus aureus/imunologia , Ácidos Teicoicos/metabolismo , Animais , Modelos Animais de Doenças , Microscopia Intravital , Macrófagos , Camundongos , Ligação Proteica , Infecções Estafilocócicas/imunologia
13.
Infect Immun ; 83(10): 4093-102, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26238710

RESUMO

In this study, we investigated the cell wall-anchored fibronectin-binding proteins SpsD and SpsL from the canine commensal and pathogen Staphylococcus pseudintermedius for their role in promoting bacterial invasion of canine progenitor epidermal keratinocytes (CPEK). Invasion was examined by the gentamicin protection assay and fluorescence microscopy. An ΔspsD ΔspsL mutant of strain ED99 had a dramatically reduced capacity to invade CPEK monolayers, while no difference in the invasion level was observed with single mutants. Lactococcus lactis transformed with plasmids expressing SpsD and SpsL promoted invasion, showing that both proteins are important. Soluble fibronectin was required for invasion, and an RGD-containing peptide or antibodies recognizing the integrin α5ß1 markedly reduced invasion, suggesting an important role for the integrin in this process. Src kinase inhibitors effectively blocked internalization, suggesting a functional role for the kinase in invasion. In order to identify the minimal fibronectin-binding region of SpsD and SpsL involved in the internalization process, recombinant fragments of both proteins were produced. The SpsD520-846 and SpsL538-823 regions harboring the major fibronectin-binding sites inhibited S. pseudintermedius internalization. Finally, the effects of staphylococcal invasion on the integrity of different cell lines were examined. Because SpsD and SpsL are critical factors for adhesion and invasion, blocking these processes could provide a strategy for future approaches to treating infections.


Assuntos
Proteínas de Bactérias/metabolismo , Doenças do Cão/microbiologia , Células Epiteliais/microbiologia , Fibronectinas/metabolismo , Infecções Estafilocócicas/veterinária , Staphylococcus/metabolismo , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Parede Celular/genética , Parede Celular/metabolismo , Doenças do Cão/metabolismo , Cães , Ligação Proteica , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus/genética , Staphylococcus/patogenicidade , Virulência
14.
Infect Immun ; 83(9): 3445-57, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26099586

RESUMO

The capacity for intracellular survival within phagocytes is likely a critical factor facilitating the dissemination of Staphylococcus aureus in the host. To date, the majority of work on S. aureus-phagocyte interactions has focused on neutrophils and, to a lesser extent, macrophages, yet we understand little about the role played by dendritic cells (DCs) in the direct killing of this bacterium. Using bone marrow-derived DCs (BMDCs), we demonstrate for the first time that DCs can effectively kill S. aureus but that certain strains of S. aureus have the capacity to evade DC (and macrophage) killing by manipulation of autophagic pathways. Strains with high levels of Agr activity were capable of causing autophagosome accumulation, were not killed by BMDCs, and subsequently escaped from the phagocyte, exerting significant cytotoxic effects. Conversely, strains that exhibited low levels of Agr activity failed to accumulate autophagosomes and were killed by BMDCs. Inhibition of the autophagic pathway by treatment with 3-methyladenine restored the bactericidal effects of BMDCs. Using an in vivo model of systemic infection, we demonstrated that the ability of S. aureus strains to evade phagocytic cell killing and to survive temporarily within phagocytes correlated with persistence in the periphery and that this effect is critically Agr dependent. Taken together, our data suggest that strains of S. aureus exhibiting high levels of Agr activity are capable of blocking autophagic flux, leading to the accumulation of autophagosomes. Within these autophagosomes, the bacteria are protected from phagocytic killing, thus providing an intracellular survival niche within professional phagocytes, which ultimately facilitates dissemination.


Assuntos
Autofagia/fisiologia , Proteínas de Bactérias/metabolismo , Células Dendríticas/microbiologia , Infecções Estafilocócicas/imunologia , Transativadores/metabolismo , Animais , Bacteriemia/metabolismo , Bacteriemia/microbiologia , Western Blotting , Células da Medula Óssea/microbiologia , Células Cultivadas , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/imunologia
15.
Infect Immun ; 83(4): 1598-609, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25644005

RESUMO

The immunoglobulin binding protein A (SpA) of Staphylococcus aureus is synthesized as a precursor with a C-terminal sorting signal. The sortase A enzyme mediates covalent attachment to peptidoglycan so that SpA is displayed on the surface of the bacterium. Protein A is also found in the extracellular medium, but the processes involved in its release are not fully understood. Here, we show that a portion of SpA is released into the supernatant with an intact sorting signal, indicating that it has not been processed by sortase A. Release of SpA was reduced when the native sorting signal of SpA was replaced with the corresponding region of another sortase-anchored protein (SdrE). Similarly, a reporter protein fused to the sorting signal of SpA was released to a greater extent than the same polypeptide fused to the SdrE sorting signal. Released SpA protected bacteria from killing in human blood, indicating that it contributes to immune evasion.


Assuntos
Aminoaciltransferases/imunologia , Proteínas de Bactérias/imunologia , Parede Celular/imunologia , Cisteína Endopeptidases/imunologia , Evasão da Resposta Imune/imunologia , Proteína Estafilocócica A/imunologia , Staphylococcus aureus/imunologia , Aminoaciltransferases/biossíntese , Aminoaciltransferases/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/biossíntese , Cisteína Endopeptidases/genética , Endopeptidases/metabolismo , Humanos , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Proteína Estafilocócica A/biossíntese , Proteína Estafilocócica A/genética , Staphylococcus aureus/metabolismo
16.
Infect Immun ; 82(6): 2448-59, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24686057

RESUMO

Staphylococcus lugdunensis is a coagulase-negative staphylococcus that is a commensal of humans and an opportunistic pathogen. It can cause a spectrum of infections, including those that are associated with the ability to form biofilm, such as occurs with endocarditis or indwelling medical devices. The genome sequences of two strains revealed the presence of orthologues of the ica genes that are responsible for synthesis of poly-N-acetylglucosamine (PNAG) that is commonly associated with biofilm in other staphylococci. However, we discovered that biofilm formed by a panel of S. lugdunensis isolates growing in iron-restricted medium was susceptible to degradation by proteases and not by metaperiodate, suggesting that the biofilm matrix comprised proteins and not PNAG. When the iron concentration was raised to 1 mM biofilm formation by all strains tested was greatly reduced. A mutant of strain N920143 lacking the entire locus that encodes iron-regulated surface determinant (Isd) proteins was defective in biofilm formation under iron-limited conditions. An IsdC-null mutant was defective, whereas IsdK, IsdJ, and IsdB mutants formed biofilm to the same level as the parental strain. Expression of IsdC was required both for the primary attachment to unconditioned polystyrene and for the accumulation phase of biofilm involving cell-cell interactions. Purified recombinant IsdC protein formed dimers in solution and Lactococcus lactis cells expressing only IsdC adhered to immobilized recombinant IsdC but not to IsdJ, IsdK, or IsdB. This is consistent with a specific homophilic interaction between IsdC molecules on neighboring cells contributing to accumulation of S. lugdunensis biofilm in vivo.


Assuntos
Proteínas de Bactérias/fisiologia , Biofilmes/crescimento & desenvolvimento , Proteínas de Transporte/fisiologia , Ferro/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus lugdunensis/fisiologia , Análise de Variância , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Western Blotting , Proteínas de Transporte/metabolismo , Meios de Cultura/química , Regulação Bacteriana da Expressão Gênica , Humanos , Proteínas Recombinantes/metabolismo
17.
PLoS Pathog ; 8(12): e1003092, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23300445

RESUMO

Staphylococcus aureus asymptomatically colonises the anterior nares, but the host and bacterial factors that facilitate colonisation remain incompletely understood. The S. aureus surface protein ClfB has been shown to mediate adherence to squamous epithelial cells in vitro and to promote nasal colonisation in both mice and humans. Here, we demonstrate that the squamous epithelial cell envelope protein loricrin represents the major target ligand for ClfB during S. aureus nasal colonisation. In vitro adherence assays indicated that bacteria expressing ClfB bound loricrin most likely by the "dock, lock and latch" mechanism. Using surface plasmon resonance we showed that ClfB bound cytokeratin 10 (K10), a structural protein of squamous epithelial cells, and loricrin with similar affinities that were in the low µM range. Loricrin is composed of three separate regions comprising GS-rich omega loops. Each loop was expressed separately and found to bind ClfB, However region 2 bound with highest affinity. To investigate if the specific interaction between ClfB and loricrin was sufficient to facilitate S. aureus nasal colonisation, we compared the ability of ClfB⁺S. aureus to colonise the nares of wild-type and loricrin-deficient (Lor⁻/⁻) mice. In the absence of loricrin, S. aureus nasal colonisation was significantly impaired. Furthermore a ClfB⁻ mutant colonised wild-type mice less efficiently than the parental ClfB⁺ strain whereas a similar lower level of colonisation was observed with both the parental strain and the ClfB⁻ mutant in the Lor⁻/⁻ mice. The ability of ClfB to support nasal colonisation by binding loricrin in vivo was confirmed by the ability of Lactococcus lactis expressing ClfB to be retained in the nares of WT mice but not in the Lor⁻/⁻ mice. By combining in vitro biochemical analysis with animal model studies we have identified the squamous epithelial cell envelope protein loricrin as the target ligand for ClfB during nasal colonisation by S. aureus.


Assuntos
Adesinas Bacterianas/metabolismo , Coagulase/metabolismo , Proteínas de Membrana/metabolismo , Nariz/microbiologia , Staphylococcus aureus/metabolismo , Adesinas Bacterianas/genética , Animais , Aderência Bacteriana/fisiologia , Linhagem Celular , Células Epiteliais/microbiologia , Feminino , Humanos , Queratina-10/metabolismo , Lactococcus lactis/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Estrutura Terciária de Proteína
18.
Microbiology (Reading) ; 156(Pt 3): 920-928, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20007649

RESUMO

The interaction of bacteria with platelets is implicated in the pathogenesis of endovascular infections, including infective endocarditis, of which Staphylococcus aureus is the leading cause. Several S. aureus surface proteins mediate aggregation of platelets by fibrinogen- or fibronectin-dependent processes, which also requires specific antibodies. In this study S. aureus was grown in iron-limited medium to mimic in vivo conditions in which iron is unavailable to pathogens. Under such conditions, a S. aureus mutant lacking the known platelet-activating surface proteins adhered directly to platelets in the absence of plasma proteins and triggered aggregation. Platelet adhesion and aggregation was prevented by inhibiting expression of iron-regulated surface determinant (Isd) proteins. Mutants defective in IsdB, but not IsdA or IsdH, were unable to adhere to or aggregate platelets. Antibodies to the platelet integrin GPIIb/IIIa inhibited platelet adhesion by IsdB-expressing strains, as did antagonists of GPIIb/IIIa. Surface plasmon resonance demonstrated that recombinant IsdB interacts directly with GPIIb/IIIa.


Assuntos
Proteínas de Bactérias/metabolismo , Plaquetas/microbiologia , Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Proteínas do Sistema Complemento/metabolismo , Humanos , Imunoglobulina G/metabolismo , Mutação , Adesividade Plaquetária , Agregação Plaquetária , Plasma Rico em Plaquetas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA