Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Hum Reprod ; 26(6): 389-401, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32330263

RESUMO

The identification of new genes involved in sexual development and gonadal function as potential candidates causing male infertility is important for both diagnostic and therapeutic purposes. Deficiency of the onco-miRNA cluster miR-17∼92 has been shown to disrupt spermatogenesis, whereas mutations in its paralog cluster, miR-106b∼25, that is expressed in the same cells, were reported to have no effect on testis development and function. The aim of this work is to determine the role of these two miRNA clusters in spermatogenesis and male fertility. For this, we analyzed miR-106b∼25 and miR-17∼92 single and double mouse mutants and compared them to control mice. We found that miR-106b∼25 knock out testes show reduced size, oligozoospermia and altered spermatogenesis. Transcriptomic analysis showed that multiple molecular pathways are deregulated in these mutant testes. Nevertheless, mutant males conserved normal fertility even when early spermatogenesis and other functions were disrupted. In contrast, miR-17∼92+/-; miR-106b∼25-/- double mutants showed severely disrupted testicular histology and significantly reduced fertility. Our results indicate that miR-106b∼25 and miR-17∼92 ensure accurate gene expression levels in the adult testis, keeping them within the required thresholds. They play a crucial role in testis homeostasis and are required to maintain male fertility. Hence, we have identified new candidate genetic factors to be screened in the molecular diagnosis of human males with reproductive disorders. Finally, considering the well-known oncogenic nature of these two clusters and the fact that patients with reduced fertility are more prone to testicular cancer, our results might also help to elucidate the molecular mechanisms linking both pathologies.


Assuntos
MicroRNAs/metabolismo , Oligospermia/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Masculino , Camundongos , MicroRNAs/genética , Oligospermia/genética , Espermatogênese/genética , Espermatogênese/fisiologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo
2.
Cell Mol Immunol ; 17(9): 954-965, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31243359

RESUMO

Evidence supports a possible role of BANK1 in innate immune signaling in B cells. In the present study, we investigated the interaction of BANK1 with two key mediators in interferon and inflammatory cytokine production, TRAF6 and MyD88. We revealed by coimmunoprecipitation (CoIP) analyses the binding of BANK1 with TRAF6 and MyD88, which were mediated by the BANK1 Toll/interleukin-1 receptor (TIR) domain. In addition, the natural BANK1-40C variant showed increased binding to MyD88. Next, we demonstrated in mouse splenic B cells that BANK1 colocalized with Toll-like receptor (TLR) 7 and TLR9 and that after stimulation with TLR7 and TLR9 agonists, the number of double-positive BANK1-TLR7, -TLR9, -TRAF6, and -MyD88 cells increased. Furthermore, we identified five TRAF6-binding motifs (BMs) in BANK1 and confirmed by point mutations and decoy peptide experiments that the C-terminal domain of BANK1-full-length (-FL) and the N-terminal domain of BANK1-Delta2 (-D2) are necessary for this binding. Functionally, we determined that the absence of the TIR domain in BANK1-D2 is important for its lysine (K)63-linked polyubiquitination and its ability to produce interleukin (IL)-8. Overall, our study describes a specific function of BANK1 in MyD88-TRAF6 innate immune signaling in B cells, clarifies functional differences between the two BANK1 isoforms and explains for the first time a functional link between autoimmune phenotypes including SLE and the naturally occurring BANK1-40C variant.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos B/metabolismo , Imunidade Inata , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Poliubiquitina/metabolismo , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/metabolismo , Baço/citologia , Receptores Toll-Like/metabolismo , Ubiquitinação
3.
J Immunol ; 194(12): 5692-702, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25972485

RESUMO

Polymorphisms in the B lymphoid tyrosine kinase (BLK) gene have been associated with autoimmune diseases, including systemic lupus erythematosus, with risk correlating with reduced expression of BLK. How reduced expression of BLK causes autoimmunity is unknown. Using Blk(+/+) , Blk(+/-) , and Blk(-/-) mice, we show that aged female Blk(+/-) and Blk(-/-) mice produced higher anti-dsDNA IgG Abs and developed immune complex-mediated glomerulonephritis, compared with Blk(+/+) mice. Starting at young age, Blk(+/-) and Blk(-/-) mice accumulated increased numbers of splenic B1a cells, which differentiated into class-switched CD138(+) IgG-secreting B1a cells. Increased infiltration of B1a-like cells into the kidneys was also observed in aged Blk(+/-) and Blk(-/-) mice. In humans, we found that healthy individuals had BLK genotype-dependent levels of anti-dsDNA IgG Abs as well as increased numbers of a B1-like cell population, CD19(+)CD3(-)CD20(+)CD43(+)CD27(+), in peripheral blood. Furthermore, we describe the presence of B1-like cells in the tubulointerstitial space of human lupus kidney biopsies. Taken together, our study reveals a previously unappreciated role of reduced BLK expression on extraperitoneal accumulation of B1a cells in mice, as well as the presence of IgG autoantibodies and B1-like cells in humans.


Assuntos
Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Expressão Gênica , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Quinases da Família src/genética , Adulto , Alelos , Animais , Anticorpos Antinucleares/sangue , Anticorpos Antinucleares/imunologia , Biópsia , Modelos Animais de Doenças , Feminino , Genótipo , Heterozigoto , Humanos , Switching de Imunoglobulina , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunofenotipagem , Lúpus Eritematoso Sistêmico/patologia , Nefrite Lúpica/genética , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Baço/imunologia , Sindecana-1/metabolismo , Adulto Jovem
4.
J Med Genet ; 52(4): 240-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25604083

RESUMO

BACKGROUND: SOX9 mutations cause the skeletal malformation syndrome campomelic dysplasia in combination with XY sex reversal. Studies in mice indicate that SOX9 acts as a testis-inducing transcription factor downstream of SRY, triggering Sertoli cell and testis differentiation. An SRY-dependent testis-specific enhancer for Sox9 has been identified only in mice. A previous study has implicated copy number variations (CNVs) of a 78 kb region 517-595 kb upstream of SOX9 in the aetiology of both 46,XY and 46,XX disorders of sex development (DSD). We wanted to better define this region for both disorders. RESULTS: By CNV analysis, we identified SOX9 upstream duplications in three cases of SRY-negative 46,XX DSD, which together with previously reported duplications define a 68 kb region, 516-584 kb upstream of SOX9, designated XXSR (XX sex reversal region). More importantly, we identified heterozygous deletions in four families with SRY-positive 46,XY DSD without skeletal phenotype, which define a 32.5 kb interval 607.1-639.6 kb upstream of SOX9, designated XY sex reversal region (XYSR). To localise the suspected testis-specific enhancer, XYSR subfragments were tested in cell transfection and transgenic experiments. While transgenic experiments remained inconclusive, a 1.9 kb SRY-responsive subfragment drove expression specifically in Sertoli-like cells. CONCLUSIONS: Our results indicate that isolated 46,XY and 46,XX DSD can be assigned to two separate regulatory regions, XYSR and XXSR, far upstream of SOX9. The 1.9 kb SRY-responsive subfragment from the XYSR might constitute the core of the Sertoli-cell enhancer of human SOX9, representing the so far missing link in the genetic cascade of male sex determination.


Assuntos
Variações do Número de Cópias de DNA , Transtornos do Desenvolvimento Sexual/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição SOX9/genética , Animais , Linhagem Celular , Estudos de Coortes , Feminino , Humanos , Masculino , Camundongos , Linhagem
5.
J Biol Chem ; 284(48): 33485-94, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19762467

RESUMO

Trichomonas vaginalis is a protozoan parasite of humans that is able to synthesize cysteine de novo using cysteine synthase but does not produce glutathione. In this study, high pressure liquid chromatography analysis confirmed that cysteine is the major intracellular redox buffer by showing that T. vaginalis contains high levels of cysteine ( approximately 600 mum) comprising more than 70% of the total thiols detected. To investigate possible mechanisms for the regulation of cysteine levels in T. vaginalis, we have characterized enzymes of the mercaptopyruvate pathway. This consists of an aspartate aminotransferase (TvAspAT1), which transaminates cysteine to form 3-mercaptopyruvate (3-MP), and mercaptopyruvate sulfurtransferase (TvMST), which transfers the sulfur of 3-MP to a nucleophilic acceptor, generating pyruvate. TvMST has high activity with 3-MP as a sulfur donor and can use several thiol compounds as sulfur acceptor substrates. Our analysis indicated that TvMST has a k(cat)/K(m) for reduced thioredoxin of 6.2 x 10(7) m(-1) s(-1), more than 100-fold higher than that observed for beta-mercaptoethanol and cysteine, suggesting that thioredoxin is a preferred substrate for TvMST. Thiol trapping and mass spectrometry provided direct evidence for the formation of thioredoxin persulfide as a product of this reaction. The thioredoxin persulfide could serve a biological function such as the transfer of the persulfide to a target protein or the sequestered release of sulfide for biosynthesis. Changes in MST activity of T. vaginalis in response to variation in the supply of exogenous cysteine are suggestive of a role for the mercaptopyruvate pathway in the removal of excess intracellular cysteine, redox homeostasis, and antioxidant defense.


Assuntos
Cisteína/metabolismo , Proteínas de Protozoários/metabolismo , Sulfurtransferases/metabolismo , Tiorredoxinas/metabolismo , Trichomonas vaginalis/enzimologia , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Cisteína/análogos & derivados , Transporte de Elétrons , Cinética , Espectrometria de Massas , Dados de Sequência Molecular , Oxirredução , Oxirredutases/metabolismo , Proteínas de Protozoários/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Enxofre/química , Enxofre/metabolismo , Sulfurtransferases/genética , Tiorredoxinas/química , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA