Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fungal Biol ; 124(5): 468-474, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32389309

RESUMO

Blastocladiella emersonii is an aquatic fungus of the phylum Blastocladiomycota, localized near the base of the fungal tree. Previous studies have shown that B. emersonii responds to heat shock and cadmium exposure inducing the transcription of a high number of genes. EST sequencing from heat shocked and cadmium exposed B. emersonii cells has shown that exposure to cadmium causes strong splicing inhibition. Despite the knowledge about splicing inhibition by cadmium, it is still unclear if other metal contaminants can cause the same response. In the present study, we have demonstrated that the effect of cadmium exposure on splicing inhibition is much stronger than that of other divalent metals such as cobalt and manganese. Data presented here also indicate that intron retention occurs randomly among the fungal transcripts, as verified by analyzing differently affected transcripts. In addition, we identified in the genome of B. emersonii the genes encoding the snRNA splicing components U1, U2, U4, U5 and U6 and observed that spliceosome snRNAs are upregulated in the presence of metals, in particular snRNA U1 in cells under cadmium exposure. This observation suggests that snRNA upregulation might be a defense of the fungal cell against the metal stress condition.


Assuntos
Blastocladiella , Metais Pesados , Spliceossomos , Blastocladiella/efeitos dos fármacos , Cádmio/toxicidade , Cobalto/toxicidade , Manganês/toxicidade , Metais Pesados/toxicidade , Spliceossomos/efeitos dos fármacos
2.
Fungal Genet Biol ; 134: 103281, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626987

RESUMO

Cadmium (Cd) is a heavy metal present in the environment mainly as a result of industrial contamination that can cause toxic effects to life. Some microorganisms, as Trichoderma harzianum, a fungus used in biocontrol, are able to survive in polluted environments and act as bioremediators. Aspects about the tolerance to the metal have been widely studied in other fungi although there are a few reports about the response of T. harzianum. In this study, we determined the effects of cadmium over growth of T. harzianum and used RNA-Seq to identify significant genes and processes regulated in the metal presence. Cadmium inhibited the fungus growth proportionally to its concentration although the fungus exhibited tolerance as it continued to grow, even in the highest concentrations used. A total of 3767 (1993 up and 1774 down) and 2986 (1606 up and 1380 down) differentially expressed genes were detected in the mycelium of T. harzianum cultivated in the presence of 1.0 mg mL-1 or 2.0 mg mL-1 of CdCl2, respectively, compared to the absence of the metal. Of these, 2562 were common to both treatments. Biological processes related to cellular homeostasis, transcription initiation, sulfur compound biosynthetic and metabolic processes, RNA processing, protein modification and vesicle-mediated transport were up-regulated. Carbohydrate metabolic processes were down-regulated. Pathway enrichment analysis indicated induction of glutathione and its precursor's metabolism. Interestingly, it also indicated an intense transcriptional induction, especially by up-regulation of spliceosome components. Carbohydrate metabolism was repressed, especially the mycoparasitism-related genes, suggesting that the mycoparasitic ability of T. harzianum could be affected during cadmium exposure. These results contribute to the advance of the current knowledge about the response of T. harzianum to cadmium exposure and provide significant targets for biotechnological improvement of this fungus as a bioremediator and a biocontrol agent.


Assuntos
Cádmio/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Hypocreales/efeitos dos fármacos , Hypocreales/genética , Transcriptoma/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Hypocreales/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/genética , Micélio/crescimento & desenvolvimento , Modificação Traducional de Proteínas/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos
3.
J Inorg Biochem ; 105(12): 1692-703, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22099472

RESUMO

Previous studies on copper(II) complexes with oxindole-Schiff base ligands have shown their potential antitumor activity towards different cells, inducing apoptosis through a preferential attack to DNA and/or mitochondria. Herein, we better characterize the interactions between some of these copper(II) complexes and DNA. Investigations on its binding ability to DNA were carried out by fluorescence measurements in competitive experiments with ethidium bromide, using plasmidial or calf-thymus DNA. These results indicated an efficient binding process similar to that observed with copper(II)-phenanthroline species, [Cu(o-phen)(2)](2+), with binding constants in the range 3 to 9×10(2) M(-1). DNA cleavage experiments in the presence and absence of distamycin, a recognized binder of DNA, indicated that this binding probably occurs at major or minor groove, leading to double-strand DNA cleavage, and being modulated by the imine ligand. Corroborating these data, discrete changes in EPR spectra of the studied complexes were observed in the presence of DNA, while more remarkable changes were observed in the presence of nucleotides (AMP, GMP, CMP or UMP). Additional evidence for preferential coordination of the copper centers to the bases guanine or cytosine was obtained from titrations of these complexes with each nucleotide, monitored by absorption spectral changes. Therefore, the obtained data point out to their action as groove binders to DNA bases, rather than as intercalators or covalent cross-linkers. Further investigations by SDS PAGE using (32)P-ATP or (32)P-oligonucleotides attested that no hydrolysis of phosphate linkage in DNA or RNA occurs, in the presence of such complexes, confirming their main oxidative mechanism of action.


Assuntos
Complexos de Coordenação/química , Cobre , DNA Circular/química , DNA/química , Indóis/química , Algoritmos , Ligação Competitiva , Dicroísmo Circular , Clivagem do DNA , Distamicinas/química , Espectroscopia de Ressonância de Spin Eletrônica , Etídio/química , Substâncias Intercalantes/química , Oxindóis , Bases de Schiff/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA