Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Cell Stem Cell ; 31(3): 359-377.e10, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458178

RESUMO

Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays, and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.


Assuntos
Vesículas Extracelulares , Células-Tronco Hematopoéticas , NADP/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular/fisiologia , Autorrenovação Celular
2.
Lab Chip ; 24(8): 2237-2252, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38456773

RESUMO

Metastatic tumors have poor prognoses for progression-free and overall survival for all cancer patients. Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are potential biomarkers of metastatic growth, with CTCCs representing an increased risk factor for metastasis. Current detection platforms are optimized for ex vivo detection of CTCs only. Microfluidic chips and size exclusion methods have been proposed for CTCC detection; however, they lack in vivo utility and real-time monitoring capability. Confocal backscatter and fluorescence flow cytometry (BSFC) has been used for label-free detection of CTCCs in whole blood based on machine learning (ML) enabled peak classification. Here, we expand to a deep-learning (DL)-based, peak detection and classification model to detect CTCCs in whole blood data. We demonstrate that DL-based BSFC has a low false alarm rate of 0.78 events per min with a high Pearson correlation coefficient of 0.943 between detected events and expected events. DL-based BSFC of whole blood maintains a detection purity of 72% and a sensitivity of 35.3% for both homotypic and heterotypic CTCCs starting at a minimum size of two cells. We also demonstrate through artificial spiking studies that DL-based BSFC is sensitive to changes in the number of CTCCs present in the samples and does not add variability in detection beyond the expected variability from Poisson statistics. The performance established by DL-based BSFC motivates its use for in vivo detection of CTCCs. Using transfer learning, we additionally validate DL-based BSFC on blood samples from different species and cancer cell types. Further developments of label-free BSFC to enhance throughput could lead to critical applications in the clinical detection of CTCCs and ex vivo isolation of CTCC from whole blood with minimal disruption and processing steps.


Assuntos
Aprendizado Profundo , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Citometria de Fluxo , Linhagem Celular Tumoral , Separação Celular/métodos
3.
Cancers (Basel) ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958410

RESUMO

Cancer cell-secreted eHsp90 binds and activates proteins in the tumor microenvironment crucial in cancer invasion. Therefore, targeting eHsp90 could inhibit invasion, preventing metastasis-the leading cause of cancer-related mortality. Previous eHsp90 studies have solely focused on its role in cancer invasion through the 2D basement membrane (BM), a form of extracellular matrix (ECM) that lines the epithelial compartment. However, its role in cancer invasion through the 3D Interstitial Matrix (IM), an ECM beyond the BM, remains unexplored. Using a Collagen-1 binding assay and second harmonic generation (SHG) imaging, we demonstrate that eHsp90 directly binds and aligns Collagen-1 fibers, the primary component of IM. Furthermore, we show that eHsp90 enhances Collagen-1 invasion of breast cancer cells in the Transwell assay. Using Hsp90 conformation mutants and inhibitors, we established that the Hsp90 dimer binds to Collagen-1 via its N-domain. We also demonstrated that while Collagen-1 binding and alignment are not influenced by Hsp90's ATPase activity attributed to the N-domain, its open conformation is crucial for increasing Collagen-1 alignment and promoting breast cancer cell invasion. These findings unveil a novel role for eHsp90 in invasion through the IM and offer valuable mechanistic insights into potential therapeutic approaches for inhibiting Hsp90 to suppress invasion and metastasis.

4.
Sci Rep ; 13(1): 14892, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689765

RESUMO

Despite careful staging, the accuracy for preoperative detection of small distant metastases remains poor, creating a clinical need for enhanced operative staging to detect occult peritoneal metastases. This study evaluates a polarization-enhanced laparoscopy (PEL) prototype and assesses its potential for label-free contrast enhancement of peritoneal metastases. This is a first-in-human feasibility study, including 10 adult patients who underwent standard staging laparoscopy (SSL) for gastrointestinal malignancy along with PEL. Image frames of all detectable peritoneal lesions underwent analysis. Using Monte Carlo simulations, contrast enhancement based on the color dependence of PEL (mPEL) was assessed. The prototype performed safely, yet with limitations in illumination, fogging of the distal window, and image co-registration. Sixty-five lesions (56 presumed benign and 9 presumed malignant) from 3 patients represented the study sample. While most lesions were visible under human examination of both SSL and PEL videos, more lesions were apparent using SSL. However, this was likely due to reduced illumination under PEL. When controlling for such effects through direct comparisons of integrated (WLL) vs differential (PEL) polarization laparoscopy images, we found that PEL imaging yielded an over twofold Weber contrast enhancement over WLL. Further, enhancements in the discrimination between malignant and benign lesions were achieved by exploiting the PEL color contrast to enhance sensitivity to tissue scattering, influenced primarily by collagen. In conclusion, PEL appears safe and easy to integrate into the operating room. When controlling for the degree of illumination, image analysis suggested a potential for mPEL to provide improved visualization of metastases.


Assuntos
Laparoscopia , Doenças Peritoneais , Neoplasias Peritoneais , Adulto , Humanos , Neoplasias Peritoneais/diagnóstico por imagem , Neoplasias Peritoneais/cirurgia , Peritônio , Refração Ocular
5.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577660

RESUMO

Metastatic tumors have poor prognoses for progression-free and overall survival for all cancer patients. Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are potential biomarkers of metastatic growth, with CTCCs representing an increased risk factor for metastasis. Current detection platforms are optimized for ex vivo detection of CTCs only. Microfluidic chips and size exclusion methods have been proposed for CTCC detection; however, they lack in vivo utility and real-time monitoring capability. Confocal backscatter and fluorescence flow cytometry (BSFC) has been used for label-free detection of CTCCs in whole blood based on machine learning (ML) enabled peak classification. Here, we expand to a deep-learning (DL) -based, peak detection and classification model to detect CTCCs in whole blood data. We demonstrate that DL-based BSFC has a low false alarm rate of 0.78 events/min with a high Pearson correlation coefficient of 0.943 between detected events and expected events. DL-based BSFC of whole blood maintains a detection purity of 72% and a sensitivity of 35.3% for both homotypic and heterotypic CTCCs starting at a minimum size of two cells. We also demonstrate through artificial spiking studies that DL-based BSFC is sensitive to changes in the number of CTCCs present in the samples and does not add variability in detection beyond the expected variability from Poisson statistics. The performance established by DL-based BSFC motivates its use for in vivo detection of CTCCs. Further developments of label-free BSFC to enhance throughput could lead to critical applications in the clinical detection of CTCCs and ex vivo isolation of CTCC from whole blood with minimal disruption and processing steps.

6.
Commun Biol ; 6(1): 405, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055483

RESUMO

Osteoarthritis (OA) is characterized by the progressive deterioration of articular cartilage, involving complicated cell-matrix interactions. Systematic investigations of dynamic cellular and matrix changes during OA progression are lacking. In this study, we use label-free two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging to assess cellular and extracellular matrix features of murine articular cartilage during several time points at early stages of OA development following destabilization of medial meniscus surgery. We detect significant changes in the organization of collagen fibers and crosslink-associated fluorescence of the superficial zone as early as one week following surgery. Such changes become significant within the deeper transitional and radial zones at later time-points, highlighting the importance of high spatial resolution. Cellular metabolic changes exhibit a highly dynamic behavior, and indicate metabolic reprogramming from enhanced oxidative phosphorylation to enhanced glycolysis or fatty acid oxidation over the ten-week observation period. The optical metabolic and matrix changes detected within this mouse model are consistent with differences identified in excised human cartilage specimens from OA and healthy cartilage specimens. Thus, our studies reveal important cell-matrix interactions at the onset of OA that may enable improved understanding of OA development and identification of new potential treatment targets.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Camundongos , Animais , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Matriz Extracelular/metabolismo , Modelos Animais de Doenças
7.
Sci Rep ; 12(1): 10721, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750889

RESUMO

Circulating tumor cell clusters (CTCCs) are rare cellular events found in the blood stream of metastatic tumor patients. Despite their scarcity, they represent an increased risk for metastasis. Label-free detection methods of these events remain primarily limited to in vitro microfluidic platforms. Here, we expand on the use of confocal backscatter and fluorescence flow cytometry (BSFC) for label-free detection of CTCCs in whole blood using machine learning for peak detection/classification. BSFC uses a custom-built flow cytometer with three excitation wavelengths (405 nm, 488 nm, and 633 nm) and five detectors to detect CTCCs in whole blood based on corresponding scattering and fluorescence signals. In this study, detection of CTCC-associated GFP fluorescence is used as the ground truth to assess the accuracy of endogenous back-scattered light-based CTCC detection in whole blood. Using a machine learning model for peak detection/classification, we demonstrated that the combined use of backscattered signals at the three wavelengths enable detection of ~ 93% of all CTCCs larger than two cells with a purity of > 82% and an overall accuracy of > 95%. The high level of performance established through BSFC and machine learning demonstrates the potential for label-free detection and monitoring of CTCCs in whole blood. Further developments of label-free BSFC to enhance throughput could lead to important applications in the isolation of CTCCs in whole blood with minimal disruption and ultimately their detection in vivo.


Assuntos
Células Neoplásicas Circulantes , Citometria de Fluxo/métodos , Humanos , Aprendizado de Máquina , Microfluídica/métodos
8.
Front Immunol ; 13: 871200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572588

RESUMO

Objective: Residual scarring after cleft lip repair surgery remains a challenge for both surgeons and patients and novel therapeutics are critically needed. The objective of this preclinical experimental study was to evaluate the impact of the methyl-ester of pro-resolving lipid mediator lipoxin A4 (LXA4-ME) on scarring in a novel rabbit model of cleft lip repair. Methods: A defect of the lip was surgically created and repaired in eight six-week old New Zealand white rabbits to simulate human cleft lip scars. Rabbits were randomly assigned to topical application of PBS (control) or 1 ug of LXA4-ME (treatment). 42 days post surgery all animals were euthanized. Photographs of the cleft lip area defect and histologic specimens were evaluated. Multiple scar assessment scales were used to compare scarring. Results: Animals treated with LXA4-ME exhibited lower Visual Scar Assessment scores compared to animals treated with PBS. Treatment with LXA4-ME resulted in a significant reduction of inflammatory cell infiltrate and density of collagen fibers. Control animals showed reduced 2D directional variance (orientation) of collagen fibers compared to animals treated with LXA4-ME demonstrating thicker and more parallel collagen fibers, consistent with scar tissue. Conclusions: These data suggest that LXA4-ME limits scarring after cleft lip repair and improves wound healing outcomes in rabbits favoring the resolution of inflammation. Further studies are needed to explore the mechanisms that underlie the positive therapeutic impact of LXA4-ME on scarring to set the stage for future human clinical trials of LXA4-ME for scar prevention or treatment after cleft lip repair.


Assuntos
Fenda Labial , Lipoxinas , Animais , Cicatriz/patologia , Cicatriz/prevenção & controle , Fenda Labial/cirurgia , Colágeno , Humanos , Lipoxinas/farmacologia , Lipoxinas/uso terapêutico , Coelhos , Cicatrização
9.
Biomed Opt Express ; 13(2): 571-589, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35284190

RESUMO

A polarization enhanced laparoscopy (PEL) imaging system was developed to examine the feasibility of utilizing PEL to augment conventional white light laparoscopy (WLL) in the visualization of peritoneal cancer metastases. The system includes a modified tip to illuminate tissue with linearly polarized light and elements in the detection path enabling recording of corresponding images linearly co- and cross-polarized relative to the incident light. WLL and PEL images from optical tissue phantoms with features of distinct scattering cross-section confirm the enhanced sensitivity of PEL to such characteristics. Additional comparisons based on images acquired from collagen gels with different levels of fiber alignment highlight another source of PEL contrast. Finally, PEL and WLL images of ex vivo human tissue illustrate the potential of PEL to improve visualization of cancerous tissue surrounded by healthy peritoneum. Given the simplicity of the approach and its potential for seamless integration with current clinical practice, our results provide motivation for clinical translation.

10.
Adv Exp Med Biol ; 3233: 257-288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34053031

RESUMO

Cell-matrix interactions play an important role in regulating a variety of essential processes in multicellular organisms, and are closely associated with numerous diseases. Modified interactions have major effects upon key features of both cells and extracellular matrix (ECM), and a thorough understanding of changes in these features can lead to critically important insights of diseases as well as the identification of effective therapeutic targets. Here, we summarize recent advances in quantitative, optical imaging of cellular metabolism and ECM spatial organization using endogenous sources of contrast. Specifically, we focus on the two-photon excited fluorescence (TPEF) imaging of autofluorescent cellular coenzymes, NAD(P)H and FAD, for the extraction of metabolic information described by optical biomarkers including cellular redox state, NAD(P)H fluorescence lifetime, and mitochondrial clustering. We show representative applications in assessing adipose tissue function and detecting malignant lesions in human skin, and further demonstrate that a combination of these optical metrics can provide complementary insights into the underlying biological mechanisms. In addition, we review the development of quantitative analysis methods to extract spatial orientation and organization metrics of collagen fibers, a major ECM component, and demonstrate applications of these approaches in two and three dimensions in several diseases, including would healing, osteoarthritis and cancer, as well as assessments of matrix remodeling in hormone-regulated engineered breast tissues. Finally, we summarize this chapter and discuss important research directions that we expect will evolve in the near future.


Assuntos
Testes Diagnósticos de Rotina , NAD , Matriz Extracelular/metabolismo , Humanos , NAD/metabolismo , Imagem Óptica , Oxirredução
11.
Tissue Eng Part A ; 27(21-22): 1399-1410, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33789436

RESUMO

Vitamin D3 (vitD3) has been implicated in various cellular functions affecting multiple tissue types. Epidemiological and laboratory studies suggest that vitD3 may be effective as a preventive or therapeutic option for breast cancer. However, randomized clinical trials have yet to confirm these suggestions. Breast neoplasias can arise from developmental alterations; based on this evidence, we seek to understand vitD3's role in normal breast development, particularly its role in epithelial morphogenetic processes such as ductal elongation, branching, and alveolar formation. These processes require extensive changes in the extracellular microenvironment, such as collagen fiber organization, and are largely influenced by hormones. Here, we build upon our past work to shed light on calcitriol's effects on collagen fiber organization by breast epithelial cells, and how such effects are modulated by extracellular matrix composition. We embedded MCF10A normal human breast epithelial cells in two different matrices-collagen type I and collagen type I + 10% Matrigel; treatment with calcitriol resulted in flatter epithelial structures. Next, using two-photon microscopy, we examined changes in collagen fiber organization and corresponding changes in epithelial structures. Applying a novel three-dimensional (3D) image analysis method, we show that increasing doses of calcitriol result in denser collagen fiber bundles in the localized area surrounding the epithelial structures, and that these bundles are aligned in a more parallel direction to epithelial structures when exposed to the highest vitD3 dose. Changed patterns in fiber organization may explain the flattening of epithelial structures; in turn, changes in biophysical forces in the matrix abutting these structures may be responsible for changes in the referred patterns. Addition of 10% Matrigel dampened the effects of calcitriol on both epithelial morphogenesis and fiber organization. Overall, we report novel functions of calcitriol in the breast epithelium and add to the growing body of evidence documenting how hormones affect biophysical processes. Impact statement In this study, we report novel functions of calcitriol in the breast epithelium and use a novel quantitative metric to parse the effects of calcitriol on collagen fiber organization that cannot be detected through conventional histological procedures. Despite the large body of literature on vitamin D3 (vitD3) and calcitriol's effects on cellular functions across tissue types, little is known about how they affect collagen fiber organization, an early critical step for breast epithelial development. This work provides further evidence that hormones affect morphogenesis by means of biophysical forces, with implications for a comprehensive view on vitD3's effects in breast development and neoplasia.


Assuntos
Calcitriol , Colágeno , Células Epiteliais/citologia , Matriz Extracelular , Vitaminas , Calcitriol/farmacologia , Colecalciferol , Epitélio , Humanos
12.
Cancer Cell ; 39(2): 240-256.e11, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33417832

RESUMO

Treatment-persistent residual tumors impede curative cancer therapy. To understand this cancer cell state we generated models of treatment persistence that simulate the residual tumors. We observe that treatment-persistent tumor cells in organoids, xenografts, and cancer patients adopt a distinct and reversible transcriptional program resembling that of embryonic diapause, a dormant stage of suspended development triggered by stress and associated with suppressed Myc activity and overall biosynthesis. In cancer cells, depleting Myc or inhibiting Brd4, a Myc transcriptional co-activator, attenuates drug cytotoxicity through a dormant diapause-like adaptation with reduced apoptotic priming. Conversely, inducible Myc upregulation enhances acute chemotherapeutic activity. Maintaining residual cells in dormancy after chemotherapy by inhibiting Myc activity or interfering with the diapause-like adaptation by inhibiting cyclin-dependent kinase 9 represent potential therapeutic strategies against chemotherapy-persistent tumor cells. Our study demonstrates that cancer co-opts a mechanism similar to diapause with adaptive inactivation of Myc to persist during treatment.


Assuntos
Adaptação Fisiológica/genética , Embrião de Mamíferos/fisiologia , Proteínas Proto-Oncogênicas c-myc/genética , Adaptação Fisiológica/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Linhagem Celular , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/genética , Diapausa/efeitos dos fármacos , Diapausa/genética , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos , Fatores de Transcrição/genética , Transcrição Gênica/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
13.
Cancer Res ; 81(2): 371-383, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32859606

RESUMO

Although hormonal therapy (HT) inhibits the growth of hormone receptor-positive (HR+) breast and prostate cancers, HT resistance frequently develops within the complex metastatic microenvironment of the host organ (often the bone), a setting poorly recapitulated in 2D culture systems. To address this limitation, we cultured HR+ breast cancer and prostate cancer spheroids and patient-derived organoids in 3D extracellular matrices (ECM) alone or together with bone marrow stromal cells (BMSC). In 3D monocultures, antiestrogens and antiandrogens induced anoikis by abrogating anchorage-independent growth of HR+ cancer cells but exhibited only modest effects against tumor cells residing in the ECM niche. In contrast, BMSC induced hormone-independent growth of breast cancer and prostate cancer spheroids and restored lumen filling in the presence of HR-targeting agents. Molecular and functional characterization of BMSC-induced hormone independence and HT resistance in anchorage-independent cells revealed distinct context-dependent mechanisms. Cocultures of ZR75-1 and LNCaP with BMSCs exhibited paracrine IL6-induced HT resistance via attenuation of HR protein expression, which was reversed by inhibition of IL6 or JAK signaling. Paracrine IL6/JAK/STAT3-mediated HT resistance was confirmed in patient-derived organoids cocultured with BMSCs. Distinctly, MCF7 and T47D spheroids retained ER protein expression in cocultures but acquired redundant compensatory signals enabling anchorage independence via ERK and PI3K bypass cascades activated in a non-IL6-dependent manner. Collectively, these data characterize the pleiotropic hormone-independent mechanisms underlying acquisition and restoration of anchorage-independent growth in HR+ tumors. Combined analysis of tumor and microenvironmental biomarkers in metastatic biopsies of HT-resistant patients can help refine treatment approaches. SIGNIFICANCE: This study uncovers a previously underappreciated dependency of tumor cells on HR signaling for anchorage-independent growth and highlights how the metastatic microenvironment restores this malignant property of cancer cells during hormone therapy.


Assuntos
Antineoplásicos Hormonais/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores de Estrogênio/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Sci Signal ; 13(640)2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665411

RESUMO

Spontaneous Ca2+ signaling from the InsP3R intracellular Ca2+ release channel to mitochondria is essential for optimal oxidative phosphorylation (OXPHOS) and ATP production. In cells with defective OXPHOS, reductive carboxylation replaces oxidative metabolism to maintain amounts of reducing equivalents and metabolic precursors. To investigate the role of mitochondrial Ca2+ uptake in regulating bioenergetics in these cells, we used OXPHOS-competent and OXPHOS-defective cells. Inhibition of InsP3R activity or mitochondrial Ca2+ uptake increased α-ketoglutarate (αKG) abundance and the NAD+/NADH ratio, indicating that constitutive endoplasmic reticulum (ER)-to-mitochondria Ca2+ transfer promoted optimal αKG dehydrogenase (αKGDH) activity. Reducing mitochondrial Ca2+ inhibited αKGDH activity and increased NAD+, which induced SIRT1-dependent autophagy in both OXPHOS-competent and OXPHOS-defective cells. Whereas autophagic flux in OXPHOS-competent cells promoted cell survival, it was impaired in OXPHOS-defective cells because of inhibition of autophagosome-lysosome fusion. Inhibition of αKGDH and impaired autophagic flux in OXPHOS-defective cells resulted in pronounced cell death in response to interruption of constitutive flux of Ca2+ from ER to mitochondria. These results demonstrate that mitochondria play a fundamental role in maintaining bioenergetic homeostasis of both OXPHOS-competent and OXPHOS-defective cells, with Ca2+ regulation of αKGDH activity playing a pivotal role. Inhibition of ER-to-mitochondria Ca2+ transfer may represent a general therapeutic strategy against cancer cells regardless of their OXPHOS status.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Fosforilação Oxidativa , Linhagem Celular Tumoral , Sobrevivência Celular , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia
15.
Cell Rep Med ; 1(2)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32577625

RESUMO

While metabolic changes are considered a cancer hallmark, their assessment has not been incorporated in the detection of early or precancers, when treatment is most effective. Here, we demonstrate that metabolic changes are detected in freshly excised human cervical precancerous tissues using label-free, non-destructive imaging of the entire epithelium. The images rely on two-photon excited fluorescence from two metabolic co-enzymes, NAD(P)H and FAD, and have micron-level resolution, enabling sensitive assessments of the redox ratio and mitochondrial fragmentation, which yield metrics of metabolic function and heterogeneity. Simultaneous characterization of morphological features, such as the depth-dependent variation of the nuclear:cytoplasmic ratio, is demonstrated. Multi-parametric analysis combining several metabolic metrics with morphological ones enhances significantly the diagnostic accuracy of identifying high-grade squamous intraepithelial lesions. Our results motivate the translation of such functional metabolic imaging to in vivo studies, which may enable improved identification of cervical lesions, and other precancers, at the bedside.


Assuntos
Colo do Útero/diagnóstico por imagem , Imagem Óptica/métodos , Lesões Pré-Cancerosas/diagnóstico , Displasia do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/diagnóstico , Colo do Útero/metabolismo , Colo do Útero/patologia , Epitélio/diagnóstico por imagem , Epitélio/metabolismo , Epitélio/patologia , Feminino , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Redes e Vias Metabólicas , Dinâmica Mitocondrial/fisiologia , NAD/metabolismo , NADP/metabolismo , Lesões Pré-Cancerosas/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração e Rotulagem
16.
J Biomed Opt ; 25(1): 1-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31953928

RESUMO

Temporal changes in macrophage metabolism are likely crucial to their role in inflammatory diseases. Label-free two-photon excited fluorescence (TPEF) and fluorescence lifetime imaging microscopy are well suited to track dynamic changes in macrophage metabolism. We performed TPEF imaging of human macrophages following either pro- or an anti-inflammatory stimulation. Two endogenous fluorophores, NAD(P)H and FAD, coenzymes involved in key metabolic pathways, provided contrast. We used the corresponding intensity images to determine the optical redox ratio of FAD to FAD + NAD(P)H. We also analyzed the intensity fluctuation patterns within NAD(P)H TPEF images to determine mitochondrial clustering patterns. Finally, we acquired NAD(P)H TPEF lifetime images to assess the relative levels of bound NAD(P)H. Our studies indicate that the redox ratio increases, whereas mitochondrial clustering decreases in response to both pro- and anti-inflammatory stimuli; however, these changes are enhanced in pro-inflammatory macrophages. Interestingly, we did not detect any significant changes in the corresponding NAD(P)H bound fraction. A combination of optical metabolic metrics could be used to classify pro- and anti-inflammatory macrophages with high accuracy. Contributions from alterations in different metabolic pathways may explain our findings, which highlight the potential of label-free two-photon imaging to assess nondestructively macrophage functional state.


Assuntos
Flavina-Adenina Dinucleotídeo/metabolismo , Macrófagos/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , NADP/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Humanos , Mitocôndrias/metabolismo , Imagem Óptica/métodos , Oxirredução
17.
J Biomed Opt ; 25(1): 1-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31983145

RESUMO

Obesity is associated with a higher risk of developing breast cancer and with worse disease outcomes for women of all ages. The composition, density, and organization of the breast tissue stroma are also known to play an important role in the development and progression of the disease. However, the connections between obesity and stromal remodeling are not well understood. We sought to characterize detailed organization features of the collagen matrix within healthy and cancerous breast tissues acquired from mice exposed to either a normal or high fat (obesity inducing) diet. We performed second-harmonic generation and spectral two-photon excited fluorescence imaging, and we extracted the level of collagen-associated fluorescence (CAF) along with metrics of collagen content, three-dimensional, and two-dimensional organization. There were significant differences in the CAF intensity and overall collagen organization between normal and tumor tissues; however, obesity-enhanced changes in these metrics, especially when three-dimensional organization metrics were considered. Thus, our studies indicate that obesity impacts significantly collagen organization and structure and the related pathways of communication may be important future therapeutic targets.


Assuntos
Colágeno/metabolismo , Matriz Extracelular/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Obesidade/metabolismo , Animais , Dieta , Feminino , Glândulas Mamárias Animais , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Células Estromais/metabolismo
18.
Biomed Opt Express ; 10(9): 4479-4488, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31565503

RESUMO

For cancer patients, treatment selection fundamentally relies on staging, with "under-staging" considered a common problem. Imaging modalities that can complement conventional white-light laparoscopy are needed to detect more accurately small metastatic lesions in patients undergoing operative cancer care. Biopsies from healthy parietal peritoneum and ovarian peritoneal metastases obtained from 8 patients were imaged employing a two-photon laser scanning microscope to generate collagen-second harmonic generation (SHG) and fluorescence images at 755 nm and 900 nm excitation and 460 ± 20 nm and 525 ± 25 nm emission. Forty-one images were analyzed by automated image processing algorithms and statistical textural analysis techniques, namely gray level co-occurrence matrices. Two textural features (contrast and correlation) were employed to describe the spatial intensity variations within the captured images and outcomes were used for discriminant analysis. We found that healthy tissues displayed large variations in contrast and correlation features as a function of distance, corresponding to repetitive, increased local intensity fluctuations. Metastatic tissue images exhibited decreased contrast and correlation related values, representing more uniform intensity patterns and smaller fibers, indicating the destruction of the healthy stroma by the cancerous infiltration. The textural outcomes resulted in high classification accuracy as evaluated quantitatively by discriminant analysis.

19.
Nat Commun ; 10(1): 4529, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586101

RESUMO

Dynamic alterations in the unique brain extracellular matrix (ECM) are involved in malignant brain tumors. Yet studies of brain ECM roles in tumor cell behavior have been difficult due to lack of access to the human brain. We present a tunable 3D bioengineered brain tissue platform by integrating microenvironmental cues of native brain-derived ECMs and live imaging to systematically evaluate patient-derived brain tumor responses. Using pediatric ependymoma and adult glioblastoma as examples, the 3D brain ECM-containing microenvironment with a balance of cell-cell and cell-matrix interactions supports distinctive phenotypes associated with tumor type-specific and ECM-dependent patterns in the tumor cells' transcriptomic and release profiles. Label-free metabolic imaging of the composite model structure identifies metabolically distinct sub-populations within a tumor type and captures extracellular lipid-containing droplets with potential implications in drug response. The versatile bioengineered 3D tumor tissue system sets the stage for mechanistic studies deciphering microenvironmental role in brain tumor progression.


Assuntos
Neoplasias Encefálicas/patologia , Ependimoma/patologia , Matriz Extracelular/patologia , Glioblastoma/patologia , Engenharia Tecidual/métodos , Encéfalo/citologia , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/cirurgia , Comunicação Celular , Pré-Escolar , Técnicas de Cocultura , Ependimoma/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neurais , Neurônios , Cultura Primária de Células/métodos , Esferoides Celulares , Células Tumorais Cultivadas , Microambiente Tumoral
20.
Biomaterials ; 179: 96-108, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29980078

RESUMO

Hormones play an important role in normal and diseased breast tissue development. However, they can also disrupt cell-matrix interactions and their role in extracellular matrix reorganization during epithelial morphogenesis remains poorly understood, partly due to a lack of sensitive approaches for matrix characterization. Here, we assess the hormonal regulation of matrix reorganization in a three-dimensional (3D) breast tissue culture model using a novel metric, i.e., 3D directional variance, to characterize the 3D organization of collagen fibers visualized via high-resolution, second harmonic generation imaging. This metric enables resolving and quantifying patterns of spatial organization throughout the matrix surrounding epithelial structures treated with 17ß-estradiol (E2) alone, and E2 in combination with either promegestone, a progestogen, or prolactin. Addition of promegestone results in the most disorganized fibers, while the E2 alone treatment leads to the most organized ones. Location-dependent organization mapping indicates that only the prolactin treatment leads to significant heterogeneities in the regional organization of collagen fibers, with higher levels of alignment observed at the end of the elongated epithelial structures. The observed collagen organization patterns for all groups persist for tens of micrometers. In addition, a comparison between 3D directional variance and typical 2D analysis approaches reveals an improved sensitivity of the 3D metric to identify organizational heterogeneities and differences among treatment groups. These results demonstrate that 3D directional variance is sensitive to subtle changes in the extracellular micro-environment and has the potential to elucidate reciprocal cell-matrix interactions in the context of numerous applications involving the study of normal and diseased tissue morphogenesis.


Assuntos
Mama/efeitos dos fármacos , Mama/metabolismo , Colágeno/química , Estradiol/farmacologia , Feminino , Humanos , Progestinas/farmacologia , Prolactina/farmacologia , Promegestona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA