Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Can J Physiol Pharmacol ; 99(1): 115-123, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32721223

RESUMO

Hyperhomocysteinemia (HHcy) affects bone remodeling, since a destructive process in cortical alveolar bone has been linked to it; however, the mechanism remains at large. HHcy increases proinflammatory cytokines viz. TNF-α, IL-1b, IL-6, and IL-8 that leads to a cascade that negatively impacts methionine metabolism and homocysteine cycling. Further, chronic inflammation decreases vitamins B12, B6, and folic acid that are required for methionine homocysteine homeostasis. This study aims to investigate a HHcy mouse model (cystathionine ß-synthase deficient, CBS+/-) for studying the potential pathophysiological changes, if any, in the periodontium (gingiva, periodontal ligament, cement, and alveolar bone). We compared the periodontium side-by-side in the CBS+/- model with that of the wild-type (C57BL/6J) mice. Histology and histomorphometry of the mandibular bone along with gene expression analyses were carried out. Also, proangiogenic proteins and metalloproteinases were studied. To our knowledge, this research shows, for the first time, a direct connection between periodontal disease during CBS deficiency, thereby suggesting the existence of disease drivers during the hyperhomocysteinemic condition. Our findings offer opportunities to develop diagnostics/therapeutics for people who suffer from chronic metabolic disorders like HHcy.


Assuntos
Cistationina beta-Sintase/deficiência , Hiper-Homocisteinemia/complicações , Periodontite/imunologia , Periodonto/patologia , Animais , Cistationina beta-Sintase/genética , Modelos Animais de Doenças , Ácido Fólico , Homocisteína/sangue , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/imunologia , Hiper-Homocisteinemia/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/imunologia , Periodontite/patologia , Periodonto/imunologia
2.
Mol Cell Biochem ; 476(2): 663-673, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33074445

RESUMO

Epigenetic memory plays crucial roles in gene regulation. It not only modulates the expression of specific genes but also has ripple effects on transcription as well as translation of other genes. Very often an alteration in expression occurs either via methylation or demethylation. In this context, "1-carbon metabolism" assumes a special significance since its dysregulation by higher levels of homocysteine; Hcy (known as hyperhomocysteinemia; HHcy), a byproduct of "1-Carbon Metabolism" during methionine biosynthesis leads to serious implications in cardiovascular, renal, cerebrovascular systems, and a host of other conditions. Currently, the circular RNAs (circRNAs) generated via non-canonical back-splicing events from the pre-mRNA molecules are at the center stage for their essential roles in diseases via their epigenetic manifestations. We recently identified a circular RNA transcript (circGRM4) that is significantly upregulated in the eye of cystathionine ß-synthase-deficient mice. We also discovered a concurrent over-expression of the mGLUR4 receptor in the eyes of these mice. In brief, circGRM4 is selectively transcribed from its parental mGLUR4 receptor gene (GRM4) functions as a "molecular-sponge" for the miRNAs and results into excessive turnover of the mGLUR4 receptor in the eye in response to extremely high circulating glutamate concentration. We opine that this epigenetic manifestation potentially predisposes HHcy people to retinovascular malfunctioning.


Assuntos
Cistationina beta-Sintase/genética , Olho/irrigação sanguínea , Olho/metabolismo , Ácido Glutâmico/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Cistationina beta-Sintase/metabolismo , Células Endoteliais/metabolismo , Epigênese Genética , Oftalmopatias/induzido quimicamente , Oftalmopatias/genética , Oftalmopatias/metabolismo , Oftalmopatias/patologia , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/genética , MicroRNAs/genética , RNA Circular/genética , Receptores de Glutamato Metabotrópico/genética , Doenças Vasculares/induzido quimicamente , Doenças Vasculares/genética , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia
3.
Can J Physiol Pharmacol ; 99(1): 56-63, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32799662

RESUMO

Epigenetic DNA methylation (1-carbon metabolism) is crucial for gene imprinting/off-printing that ensures epigenetic memory but also generates a copious amount of homocysteine (Hcy), unequivocally. That is why during pregnancy, expectant mothers are recommended "folic acid" preemptively to avoid birth defects in the young ones because of elevated Hcy levels (i.e., hyperhomocysteinemia (HHcy)). As we know, children born with HHcy have several musculoskeletal abnormalities, including growth retardation. Here, we focus on the gut-dysbiotic microbiome implication(s) that we believe instigates the "1-carbon metabolism" and HHcy causing growth retardation along with skeletal muscle abnormalities. We test our hypothesis whether high-methionine diet (HMD) (an amino acid that is high in red meat), a substrate for Hcy, can cause skeletal muscle and growth retardation, and treatment with probiotics (PB) to mitigate skeletal muscle dysfunction. To test this, we employed cystathionine ß-synthase, CBS deficient mouse (CBS+/-) fed with/without HMD and with/without a probiotic (Lactobacillus rhamnosus) in drinking water for 16 weeks. Matrix metalloproteinase (MMP) activity, a hallmark of remodeling, was measured by zymography. Muscle functions were scored via electric stimulation. Our results suggest that compared to the wild-type, CBS+/- mice exhibited reduced growth phenotype. MMP-2 activity was robust in CBS+/- and HMD effects were successfully attenuated by PB intervention. Electrical stimulation magnitude was decreased in CBS+/- and CBS+/- treated with HMD. Interestingly; PB mitigated skeletal muscle growth retardation and atrophy. Collectively, results imply that individuals with mild/moderate HHcy seem more prone to skeletal muscle injury and its dysfunction.


Assuntos
Disbiose/complicações , Transtornos do Crescimento/prevenção & controle , Hiper-Homocisteinemia/complicações , Músculo Esquelético/patologia , Probióticos/administração & dosagem , Animais , Cistationina beta-Sintase/deficiência , Cistationina beta-Sintase/genética , Metilação de DNA , Modelos Animais de Doenças , Disbiose/metabolismo , Disbiose/microbiologia , Disbiose/terapia , Epigênese Genética , Feminino , Microbioma Gastrointestinal/fisiologia , Transtornos do Crescimento/sangue , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/patologia , Homocisteína/sangue , Homocisteína/metabolismo , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Lacticaseibacillus rhamnosus , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metionina/administração & dosagem , Metionina/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo
4.
Front Immunol ; 11: 1730, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973741

RESUMO

Hidradenitis suppurativa (HS) is a chronic, inflammatory skin condition characterized by painful nodules which suppurate and later develop into scar tissues followed by the development of hypodermal tracts. Although the mechanisms behind HS are not fully understood, it is known that dietary factors play important roles in flare frequency and severity. We hypothesize that the high fat diet (HFD) causes dysbiosis, systemic inflammation, and hyperhomocysteinemia (HHcy) in susceptible individuals, which subsequently elevate inflammatory cytokines such as IL-1ß, IL-6, IL-17, and tumor necrosis factor alpha (TNF-α). This increase in dysbiosis-led inflammation coupled with a dysregulation of the 1-carbon metabolism results in an increase in matrix metalloproteinases MMP-2, MMP-8, and MMP-9 along with tissue matrix remodeling in the development and maintenance of the lesions and tracts. This manuscript weaves together the potential roles played by the gut microbiome, HHcy, MMPs, and the 1-carbon metabolism toward HS disease causation in susceptible individuals.


Assuntos
Bactérias/metabolismo , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Hidradenite Supurativa/etiologia , Homocisteína/sangue , Hiper-Homocisteinemia/complicações , Metaloproteinases da Matriz/metabolismo , Pele/enzimologia , Animais , Biomarcadores/sangue , Disbiose , Hidradenite Supurativa/enzimologia , Hidradenite Supurativa/microbiologia , Hidradenite Supurativa/patologia , Humanos , Hiper-Homocisteinemia/sangue , Medição de Risco , Fatores de Risco , Pele/patologia
5.
Can J Physiol Pharmacol ; 98(2): 51-60, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31369712

RESUMO

Homocysteine (Hcy), a sulfur-containing nonproteinogenic amino acid, is generated as a metabolic intermediate. Hcy constitutes an important part of the "1-carbon metabolism" during methionine turnover. Elevated levels of Hcy known as hyperhomocysteinemia (HHcy) results from vitamin B deficiency, lack of exercise, smoking, excessive alcohol intake, high-fat and methionine-rich diet, and the underlying genetic defects. These factors directly affect the "1-carbon metabolism (methionine-Hcy-folate)" of a given cell. In fact, the Hcy levels are determined primarily by dietary intake, vitamin status, and the genetic blueprint of the susceptible individual. Although Hcy performs an important role in cellular functions, genetic alterations in any of the key enzymes responsible for the "1-carbon metabolism" could potentially upset the metabolic cycle, thus causing HHcy environment in susceptible people. As such, HHcy relates to several clinical conditions like atherosclerosis, myocardial infarction, stroke, cognitive impairment, dementia, Parkinson's disease, multiple sclerosis, epilepsy, and ocular disorders, among others. This article summarizes the findings from our laboratory and public database regarding genetics of HHcy and its effects on ocular disorders, their respective management during dysregulation of the 1-carbon metabolism.


Assuntos
Carbono/metabolismo , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/metabolismo , Retina/patologia , Retina/fisiopatologia , Animais , Humanos , Hiper-Homocisteinemia/patologia , Hiper-Homocisteinemia/fisiopatologia
6.
J Cell Physiol ; 235(3): 2590-2598, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31489638

RESUMO

Unless there is a genetic defect/mutation/deletion in a gene, the causation of a given disease is chronic dysregulation of gut metabolism. Most of the time, if not always, starts within the gut; that is what we eat. Recent research shows that the imbalance between good versus bad microbial population, especially in the gut, causes systemic diseases. Thus, an appropriate balance of the gut microbiota (eubiosis over dysbiosis) needs to be maintained for normal health (Veeranki and Tyagi, 2017, Journal of Cellular Physiology, 232, 2929-2930). However, during various diseases such as metabolic syndrome, inflammatory bowel disease, diabetes, obesity, and hypertension the dysbiotic gut environment tends to prevail. Our research focuses on homocysteine (Hcy) metabolism that occupies a center-stage in many biochemically relevant epigenetic mechanisms. For example, dysbiotic bacteria methylate promoters to inhibit gene activities. Interestingly, the product of the 1-carbon metabolism is Hcy, unequivocally. Emerging studies show that host resistance to various antibiotics occurs due to inverton promoter inhibition, presumably because of promoter methylation. This results from modification of host promoters by bacterial products leading to loss of host's ability to drug compatibility and system sensitivity. In this study, we focus on the role of high methionine diet (HMD), an ingredient rich in red meat and measure the effects of a probiotic on cardiac muscle remodeling and its functions. We employed wild type (WT) and cystathionine beta-synthase heterozygote knockout (CBS+/- ) mice with and without HMD and with and without a probiotic; PB (Lactobacillus) in drinking water for 16 weeks. Results indicate that matrix metalloproteinase-2 (MMP-2) activity was robust in CBS+/- fed with HMD and that it was successfully attenuated by the PB treatment. Cardiomyocyte contractility and ECHO data revealed mitigation of the cardiac dysfunction in CBS+/- + HMD mice treated with PB. In conclusion, our data suggest that probiotics can potentially reverse the Hcy-meditated cardiac dysfunction.


Assuntos
Cistationina beta-Sintase/genética , Disbiose/metabolismo , Microbioma Gastrointestinal/genética , Homocisteína/metabolismo , Animais , Carbono/metabolismo , Modelos Animais de Doenças , Disbiose/genética , Disbiose/microbiologia , Epigênese Genética/genética , Homocisteína/genética , Humanos , Lactobacillus/efeitos dos fármacos , Lactobacillus/metabolismo , Metaloproteinase 2 da Matriz/genética , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Probióticos/farmacologia
7.
Can J Physiol Pharmacol ; 97(11): 1013-1017, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31269408

RESUMO

Homocysteine, a non-proteinogenic amino acid but an important metabolic intermediate is generated as an integral component for the "1-carbon metabolism" during normal physiology. It is catabolized to cysteine via the transulfuration pathway resulting in the generation of hydrogen sulfide, a naturally endogenous byproduct. Genetics or metabolic derangement can alter homocysteine concentration leading to hyperhomocysteinemia (HHcy), a physiologically unfavorable condition that causes serious medical conditions including muscle wasting. HHcy environment can derail physiological processes by targeting biomolecules such as Akt; however, not much is known regarding the effects of HHcy on regulation of transcription factors such as forkhead box O (FOXO) proteins. Recently, hydrogen sulfide has been shown to be highly effective in alleviating the effects of HHcy by serving as an antiapoptotic factor, but role of FOXO and its interaction with hydrogen sulfide are yet to be established. In this review, we discuss role(s) of HHcy in skeletal muscle atrophy and how HHcy interact with FOXO and peroxisome proliferator-activated receptor gamma coactivator 1-alpha expressions that are relevant in musculoskeletal atrophy. Further, therapeutic intervention with hydrogen sulfide for harnessing its beneficial effects might help mitigate the dysregulated 1-carbon metabolism that happens to be the hallmark of HHcy-induced pathologies such as muscle atrophy.


Assuntos
Carbono/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Atrofia Muscular/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/patologia
8.
Int J Ophthalmol ; 12(5): 754-764, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31131233

RESUMO

AIM: To investigate the applications of hydrogen sulfide (H2S) in eye-specific ailments in mice. METHODS: Heterozygous cystathionine-ß-synthase (CBS+/-) and wild-type C57BL/6J (WT) mice fed with or without high methionine diet (HMD) were administered either phosphate buffered saline (PBS) or the slow-release H2S donor: GYY4137. Several analyses were performed to study GYY4137 effects by examining retinal lysates for key protein expressions along with plasma glutamate and glutathione estimations. Intraocular pressure (IOP) was monitored during GYY4137 treatment; barium sulfate and bovine serum albumin conjugated fluorescein isothiocyanate (BSA-FITC) angiographies were performed for examining vasculature and its permeability post-treatment. Vision-guided behavior was also tested employing novel object recognition test (NORT) and light-dark box test (LDBT) recordings. RESULTS: CBS deficiency (CBS+/-) coupled with HMD led disruption of methionine/homocysteine (Hcy) metabolism leading to hyperhomocysteinemia (HHcy) in CBS+/- mice as reflected by increased Hcy, and s-adenosylhomocysteine hydrolase (SAHH) levels. Unlike CBS, cystathionine-γ lyase (CSE), methylenetetrahydrofolate reductase (MTHFR) levels which were reduced but compensated by GYY4137 intervention. Heightened oxidative and endoplasmic reticulum (ER) stress responses were mitigated by GYY4137 effects along with enhanced glutathione (GSH) levels. Increased glutamate levels in CBS+/- strain were prominent than WT mice and these mice also exhibited higher IOP that was lowered by GYY4137 treatment. CBS deficiency also resulted in vision-guided behavioral impairment as revealed by NORT and LDBT findings. Interestingly, GYY4137 was able to improve CBS+/- mice behavior together with lowering their glutamate levels. Blood-retinal barrier (BRB) appeared compromised in CBS+/- with vessels' leakage that was mitigated in GYY4137 treated group. This corroborated the results for occludin (an integral plasma membrane protein of the cellular tight junctions) stabilization. CONCLUSION: Findings reveal that HHcy-induced glutamate excitotoxicity, oxidative damage, ER-stress and vascular permeability alone or together can compromise ocular health and that GYY4137 could serve as a potential therapeutic agent for treating HHcy induced ocular disorders.

9.
J Cell Biochem ; 120(1): 77-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272816

RESUMO

Higher levels of nonprotein amino acid homocysteine (Hcy), that is, hyperhomocysteinemia (HHcy) (~5% of general population) has been associated with severe vasculopathies in different organs; however, precise molecular mechanism(s) as to how HHcy plays havoc with body's vascular networks are largely unknown. Interventional modalities have not proven beneficial to counter multifactorial HHcy's effects on the vascular system. An ancient Indian form of exercise called 'yoga' causes transient ischemia as a result of various body postures however the cellular mechanisms are not clear. We discuss a novel perspective wherein we argue that application of remote ischemic conditioning (RIC) could, in fact, deliver anticipated results to patients who are suffering from chronic vascular dysfunction due to HHcy. RIC is the mechanistic phenomenon whereby brief episodes of ischemia-reperfusion events are applied to distant tissues/organs; that could potentially offer a powerful tool in mitigating chronic lethal ischemia in target organs during HHcy condition via simultaneous reduction of inflammation, oxidative and endoplasmic reticulum stress, extracellular matrix remodeling, fibrosis, and angiogenesis. We opine that during ischemic conditioning our organs cross talk by releasing cellular messengers in the form of exosomes containing messenger RNAs, circular RNAs, anti-pyroptotic factors, protective cytokines like musclin, transcription factors, small molecules, anti-inflammatory, antiapoptotic factors, antioxidants, and vasoactive gases. All these could help mobilize the bone marrow-derived stem cells (having tissue healing properties) to target organs. In that context, we argue that RIC could certainly play a savior's role in an unfortunate ischemic or adverse event in people who have higher levels of the circulating Hcy in their systems.


Assuntos
Homocisteína/metabolismo , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/terapia , Reperfusão/métodos , Doenças Vasculares/metabolismo , Doenças Vasculares/terapia , Animais , Citocinas/metabolismo , Estresse do Retículo Endoplasmático , Homocisteína S-Metiltransferase/metabolismo , Humanos , Hiper-Homocisteinemia/complicações , Inflamação/metabolismo , Isquemia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Doenças Vasculares/complicações
10.
Can J Physiol Pharmacol ; 97(6): 441-456, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30422673

RESUMO

Elevated homocysteine (Hcy), i.e., hyperhomocysteinemia (HHcy), causes skeletal muscle myopathy. Among many cellular and metabolic alterations caused by HHcy, oxidative and endoplasmic reticulum (ER) stress are considered the major ones; however, the precise molecular mechanism(s) in this process is unclear. Nevertheless, there is no treatment option available to treat HHcy-mediated muscle injury. Hydrogen sulfide (H2S) is increasingly recognized as a potent anti-oxidant, anti-apoptotic/necrotic/pyroptotic, and anti-inflammatory compound and also has been shown to improve angiogenesis during ischemic injury. Patients with CBS mutation produce less H2S, making them vulnerable to Hcy-mediated cellular damage. Many studies have reported bidirectional regulation of ER stress in apoptosis through JNK activation and concomitant attenuation of cell proliferation and protein synthesis via PI3K/AKT axis. Whether H2S mitigates these detrimental effects of HHcy on muscle remains unexplored. In this review, we discuss molecular mechanisms of HHcy-mediated oxidative/ER stress responses, apoptosis, angiogenesis, and atrophic changes in skeletal muscle and how H2S can restore skeletal muscle homeostasis during HHcy condition. This review also highlights the molecular mechanisms on how H2S could be developed as a clinically relevant therapeutic option for chronic conditions that are aggravated by HHcy.


Assuntos
Estresse do Retículo Endoplasmático , Homeostase , Sulfeto de Hidrogênio/metabolismo , Hiper-Homocisteinemia/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Animais , Humanos , Hiper-Homocisteinemia/patologia , Músculo Esquelético/patologia
11.
Physiol Rep ; 6(17): e13858, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30175474

RESUMO

Neoangiogenesis is a fundamental process which helps to meet energy requirements, tissue growth, and wound healing. Although previous studies showed that Peroxisome proliferator-activated receptor (PPAR-γ) regulates neoangiogenesis via upregulation of vascular endothelial growth factor (VEGF), and both VEGF and PPAR-γ expressions were inhibited during hyperhomocysteinemic (HHcy), whether these two processes could trigger pathological effects in skeletal muscle via compromising neoangiogenesis has not been studied yet. Unfortunately, there are no treatment options available to date for ameliorating HHcy-mediated neoangiogenic defects. Hydrogen sulfide (H2 S) is a novel gasotransmitter that can induce PPAR-γ levels. However, patients with cystathionine-ß-synthase (CBS) mutation(s) cannot produce a sufficient amount of H2 S. We hypothesized that exogenous supplementation of H2 S might improve HHcy-mediated poor neoangiogenesis via the PPAR-γ/VEGF axis. To examine this, we created a hind limb femoral artery ligation (FAL) in CBS+/- mouse model and treated them with GYY4137 (a long-acting H2 S donor compound) for 21 days. To evaluate neoangiogenesis, we used barium sulfate angiography and laser Doppler blood flow measurements in the ischemic hind limbs of experimental mice post-FAL to assess blood flow. Proteins and mRNAs levels were studied by Western blots and qPCR analyses. HIF1-α, VEGF, PPAR-γ and p-eNOS expressions were attenuated in skeletal muscle of CBS+/- mice after 21 days of FAL in comparison to wild-type (WT) mice, that were improved via GYY4137 treatment. We also found that the collateral vessel density and blood flow were significantly reduced in post-FAL CBS+/- mice compared to WT mice and these effects were ameliorated by GYY4137. Moreover, we found that plasma nitrite levels were decreased in post-FAL CBS+/- mice compared to WT mice, which were mitigated by GYY4137 supplementation. These results suggest that HHcy can inhibit neoangiogenesis via antagonizing the angiogenic signal pathways encompassing PPAR-γ/VEGF axis and that GYY4137 could serve as a potential therapeutic to alleviate the harmful metabolic effects of HHcy conditions.


Assuntos
Cistationina beta-Sintase/deficiência , Sulfeto de Hidrogênio/farmacologia , Isquemia/tratamento farmacológico , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/efeitos dos fármacos , Transdução de Sinais , Animais , Cistationina beta-Sintase/genética , Membro Posterior/irrigação sanguínea , Sulfeto de Hidrogênio/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Mutação , Óxido Nítrico Sintase Tipo III/metabolismo , PPAR gama/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Am J Physiol Cell Physiol ; 315(5): C609-C622, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30110564

RESUMO

Although hyperhomocysteinemia (HHcy) occurs because of the deficiency in cystathionine-ß-synthase (CBS) causing skeletal muscle dysfunction, it is still unclear whether this effect is mediated through oxidative stress, endoplasmic reticulum (ER) stress, or both. Nevertheless, there is no treatment option available to improve HHcy-mediated muscle injury. Hydrogen sulfide (H2S) is an antioxidant compound, and patients with CBS mutation do not produce H2S. In this study, we hypothesized that H2S mitigates HHcy-induced redox imbalance/ER stress during skeletal muscle atrophy via JNK phosphorylation. We used CBS+/- mice to study HHcy-mediated muscle atrophy, and treated them with sodium hydrogen sulfide (NaHS; an H2S donor). Proteins and mRNAs were examined by Western blots and quantitative PCR. Proinflammatory cytokines were also measured. Muscle mass and strength were studied via fatigue susceptibility test. Our data revealed that HHcy was detrimental to skeletal mass, particularly gastrocnemius and quadriceps muscle weight. We noticed that oxidative stress was reversed by NaHS in homocysteine (Hcy)-treated C2C12 cells. Interestingly, ER stress markers (GRP78, ATF6, pIRE1α, and pJNK) were elevated in vivo and in vitro, and NaHS mitigated these effects. Additionally, we observed that JNK phosphorylation was upregulated in C2C12 after Hcy treatment, but NaHS could not reduce this effect. Furthermore, inflammatory cytokines IL-6 and TNF-α were higher in plasma from CBS as compared with wild-type mice. FOXO1-mediated Atrogin-1 and MuRF-1 upregulation were attenuated by NaHS. Functional studies revealed that NaHS administration improved muscle fatigability in CBS+/- mice. In conclusion, our work provides evidence that NaHS is beneficial in mitigating HHcy-mediated skeletal injury incited by oxidative/ER stress responses.


Assuntos
Cistationina beta-Sintase/genética , Hiper-Homocisteinemia/tratamento farmacológico , Atrofia Muscular/tratamento farmacológico , Sulfitos/administração & dosagem , Fator 6 Ativador da Transcrição/genética , Animais , Antioxidantes/administração & dosagem , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/genética , Interleucina-6/sangue , MAP Quinase Quinase 4/genética , Camundongos , Proteínas Musculares/genética , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Atrofia Muscular/sangue , Atrofia Muscular/etiologia , Atrofia Muscular/genética , Estresse Oxidativo/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas Ligases SKP Culina F-Box/genética , Proteínas com Motivo Tripartido/genética , Fator de Necrose Tumoral alfa/sangue , Ubiquitina-Proteína Ligases/genética
13.
Bone ; 114: 90-108, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29908298

RESUMO

Hydrogen sulfide (H2S) is a novel gasotransmitter produced endogenously in mammalian cells, which works by mediating diverse physiological functions. An imbalance in H2S metabolism is associated with defective bone homeostasis. However, it is unknown whether H2S plays any epigenetic role in bone loss induced by hyperhomocysteinemia (HHcy). We demonstrate that diet-induced HHcy, a mouse model of metabolite induced osteoporosis, alters homocysteine metabolism by decreasing plasma levels of H2S. Treatment with NaHS (H2S donor), normalizes the plasma level of H2S and further alleviates HHcy induced trabecular bone loss and mechanical strength. Mechanistic studies have shown that DNMT1 expression is higher in the HHcy condition. The data show that activated phospho-JNK binds to the DNMT1 promoter and causes epigenetic DNA hyper-methylation of the OPG gene. This leads to activation of RANKL expression and mediates osteoclastogenesis. However, administration of NaHS could prevent HHcy induced bone loss. Therefore, H2S could be used as a novel therapy for HHcy mediated bone loss.


Assuntos
Doenças Ósseas Metabólicas/metabolismo , Epigenômica/métodos , Sulfeto de Hidrogênio/uso terapêutico , Hiper-Homocisteinemia/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Animais , Doenças Ósseas Metabólicas/tratamento farmacológico , Doenças Ósseas Metabólicas/genética , Feminino , Sulfeto de Hidrogênio/farmacologia , Hiper-Homocisteinemia/tratamento farmacológico , Hiper-Homocisteinemia/genética , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Osteoprotegerina/genética , Ligante RANK/genética
14.
Int J Ophthalmol ; 11(5): 881-887, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29862191

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness and is becoming a global crisis since affected people will increase to 288 million by 2040. Genetics, age, diabetes, gender, obesity, hypertension, race, hyperopia, iris-color, smoking, sun-light and pyroptosis have varying roles in AMD, but oxidative stress-induced inflammation remains a significant driver of pathobiology. Eye is a unique organ as it contains a remarkable oxygen-gradient that generates reactive oxygen species (ROS) which upregulates inflammatory pathways. ROS becomes a source of functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells and retinal ganglion cells. Reports demonstrated that hydrogen sulfide (H2S) acts as a signaling molecule and that it may treat ailments. Therefore, we propose a novel hypothesis that H2S may restore homeostasis in the eyes thereby reducing damage caused by oxidative injury and inflammation. Since H2S has been shown to be a powerful antioxidant because of its free-radicals' inhibition properties in addition to its beneficial effects in age-related conditions, therefore, patients may benefit from H2S salubrious effects not only by minimizing their oxidant and inflammatory injuries to retina but also by lowering retinal glutamate excitotoxicity.

15.
Exp Eye Res ; 174: 80-92, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29803556

RESUMO

Cystathionine-ß-synthase (CBS) gene encodes L-serine hydrolyase which catalyzes ß-reaction to condense serine with homocysteine (Hcy) by pyridoxal-5'-phosphate helps to form cystathionine which in turn is converted to cysteine. CBS resides at the intersection of transmethylation, transsulfuration, and remethylation pathways, thus lack of CBS fundamentally blocks Hcy degradation; an essential step in glutathione synthesis. Redox homeostasis, free-radical detoxification and one-carbon metabolism (Methionine-Hcy-Folate cycle) require CBS and its deficiency leads to hyperhomocysteinemia (HHcy) causing retinovascular thromboembolism and eye-lens dislocation along with vascular cognitive impairment and dementia. HHcy results in retinovascular, coronary, cerebral and peripheral vessels' dysfunction and how it causes metabolic dysregulation predisposing patients to serious eye conditions remains unknown. HHcy orchestrates inflammation and redox imbalance via epigenetic remodeling leading to neurovascular pathologies. Although circular RNAs (circRNAs) are dominant players regulating their parental genes' expression dynamics, their importance in ocular biology has not been appreciated. Progress in gene-centered analytics via improved microarray and bioinformatics are enabling dissection of genomic pathways however there is an acute under-representation of circular RNAs in ocular disorders. This study undertook circRNAs' analysis in the eyes of CBS deficient mice identifying a pool of 12532 circRNAs, 74 exhibited differential expression profile, ∼27% were down-regulated while most were up-regulated (∼73%). Findings also revealed several microRNAs that are specific to each circRNA suggesting their roles in HHcy induced ocular disorders. Further analysis of circRNAs helped identify novel parental genes that seem to influence certain eye disease phenotypes.


Assuntos
Cistationina beta-Sintase/genética , Hiper-Homocisteinemia/metabolismo , Subluxação do Cristalino/metabolismo , RNA/metabolismo , Animais , Cistationina beta-Sintase/metabolismo , Epigenômica , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , RNA Circular
16.
Alcohol Clin Exp Res ; 40(12): 2474-2481, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27805256

RESUMO

Alcohol is the most socially accepted addictive drug. Alcohol consumption is associated with some health problems such as neurological, cognitive, behavioral deficits, cancer, heart, and liver disease. Mechanisms of alcohol-induced toxicity are presently not yet clear. One of the mechanisms underlying alcohol toxicity has to do with its interaction with amino acid homocysteine (Hcy), which has been linked with brain neurotoxicity. Elevated Hcy impairs with various physiological mechanisms in the body, especially metabolic pathways. Hcy metabolism is predominantly controlled by epigenetic regulation such as DNA methylation, histone modifications, and acetylation. An alteration in these processes leads to epigenetic modification. Therefore, in this review, we summarize the role of Hcy metabolism abnormalities in alcohol-induced toxicity with epigenetic adaptation and their influences on cerebrovascular pathology.


Assuntos
Alcoolismo/genética , Epigênese Genética/efeitos dos fármacos , Etanol/toxicidade , Homocisteína/metabolismo , Hiper-Homocisteinemia/induzido quimicamente , Hiper-Homocisteinemia/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Animais , Humanos , Modelos Biológicos , Modelos Neurológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA