Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Adv Protein Chem Struct Biol ; 142: 25-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39059987

RESUMO

Breast cancer (BC) is the most common cancer among women and a major cause of death from cancer. The role of estrogen and progestins, including synthetic hormones like R5020, in the development of BC has been highlighted in numerous studies. In our study, we employed machine learning and advanced bioinformatics to identify genes that could serve as diagnostic markers for BC. We thoroughly analyzed the transcriptomic data of two BC cell lines, T47D and UDC4, and performed differential gene expression analysis. We also conducted functional enrichment analysis to understand the biological functions influenced by these genes. Our study identified several diagnostic genes strongly associated with BC, including MIR6728, ENO1-IT1, ENO1-AS1, RNU6-304P, HMGN2P17, RP3-477M7.5, RP3-477M7.6, and CA6. The genes MIR6728, ENO1-IT1, ENO1-AS1, and HMGN2P17 are involved in cancer control, glycolysis, and DNA-related processes, while CA6 is associated with apoptosis and cancer development. These genes could potentially serve as predictors for BC, paving the way for more precise diagnostic methods and personalized treatment plans. This research enhances our understanding of BC and offers promising avenues for improving patient care in the future.


Assuntos
Neoplasias da Mama , Estrogênios , Progestinas , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Estrogênios/metabolismo , Genômica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
2.
Adv Protein Chem Struct Biol ; 142: 367-396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39059991

RESUMO

Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor derived from parafollicular thyroid gland cells. In both hereditary MTC and sporadic forms, genetic changes result in fundamental changes, and prognosis and mutational status are highly correlated. In this work, biomarker genes (DEGs and DEmiRNAs) for MTC will be computationally identified in order to help in their diagnosis and treatment. The gene expression profiles of two different types of studies, namely without-treatment (wo-trt) and with-treatment (w-trt), are considered for discovering biomarkers. The datasets were retrieved from the GEO database, and the DEGs and DEmiRNAs were analyzed using ExpressAnalyst and GEO2R. The functional analysis of DEGs and DEmiRNAs was performed, and most of the pathways enriched related to thyroid oncological pathways such as MAPK pathway,mTOR pathway, and PI3K-AKT Signaling pathway. Through this conclusion, the RET gene was upregulated wo-trt; the dinaciclib treatment RET gene was down-regulated computationally. To optimize the therapeutic targeting of RET, greater research into the mechanisms regulating RET transcription is necessary.


Assuntos
Biomarcadores Tumorais , Carcinoma Neuroendócrino , Biologia Computacional , Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
3.
Life Sci ; 337: 122360, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38135117

RESUMO

Triple-Negative Breast Cancer (TNBC) presents a significant challenge in oncology due to its aggressive behavior and limited therapeutic options. This review explores the potential of immunotherapy, particularly vaccine-based approaches, in addressing TNBC. It delves into the role of immunoinformatics in creating effective vaccines against TNBC. The review first underscores the distinct attributes of TNBC and the importance of tumor antigens in vaccine development. It then elaborates on antigen detection techniques such as exome sequencing, HLA typing, and RNA sequencing, which are instrumental in identifying TNBC-specific antigens and selecting vaccine candidates. The discussion then shifts to the in-silico vaccine development process, encompassing antigen selection, epitope prediction, and rational vaccine design. This process merges computational simulations with immunological insights. The role of Artificial Intelligence (AI) in expediting the prediction of antigens and epitopes is also emphasized. The review concludes by encapsulating how Immunoinformatics can augment the design of TNBC vaccines, integrating tumor antigens, advanced detection methods, in-silico strategies, and AI-driven insights to advance TNBC immunotherapy. This could potentially pave the way for more targeted and efficacious treatments.


Assuntos
Neoplasias de Mama Triplo Negativas , Vacinas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Multiômica , Inteligência Artificial , Epitopos , Vacinas/uso terapêutico , Antígenos de Neoplasias
4.
Adv Protein Chem Struct Biol ; 137: 161-180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37709374

RESUMO

Colorectal cancer (CRC) is a form of cancer characterized by many symptoms and readily metastasizes to different organs in the body. Circadian rhythm is one of the many processes that is observed to be dysregulated in CRC-affected patients. In this study, we aim to identify the dysregulated physiological processes in CRC-affected patients and correlate the expression profiles of the circadian clock genes with CRC-patients' survival rates. We performed an extensive microarray gene expression pipeline, whereby 471 differentially expressed genes (DEGs) were identified, following which, we streamlined our search to 43 circadian clock affecting DEGs. The Circadian Gene Database was accessed to retrieve the circadian rhythm-specific genes. The DEGs were then subjected to multi-level functional annotation, i.e., preliminary analysis using ClueGO/CluePedia and pathway enrichment using DAVID. The findings of our study were interesting, wherein we observed that the survival percentage of CRC-affected patients dropped significantly around the 100th-month mark. Furthermore, we identified hormonal activity, xenobiotic metabolism, and PI3K-Akt signaling pathway to be frequently dysregulated cellular functions. Additionally, we detected that the ZFYVE family of genes and the two genes, namely MYC and CDK4 were the significant DEGs that are linked to the pathogenesis and progression of CRC. This study sheds light on the importance of bioinformatics to simplify our understanding of the interactions of different genes that control different phenotypes.


Assuntos
Neoplasias Colorretais , Fosfatidilinositol 3-Quinases , Humanos , Biologia Computacional , Fenótipo , Neoplasias Colorretais/genética , Expressão Gênica
5.
Adv Protein Chem Struct Biol ; 137: 181-203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37709376

RESUMO

Colorectal cancer (CRC) is third cancer causing death in the world. CRC is associated with disrupting the circadian rhythm (CR), closely associating the CRC progression and the dysregulation of genes involved in the biological clock. In this study, we aimed to understand the circadian rhythm changes in patients diagnosed with CRC. We used the GEO database with the ID GSE46549 for our analysis, which consists of 32 patients with CRC and one as normal control. Our study has identified five essential genes involved in CRC, HAPLN1, CDH12, IGFBP5, DCHS2, and DOK5, and had different enriched pathways, such as the Wnt-signaling pathway, at different time points of study. As a part of our study, we also identified various related circadian genes, such as CXCL12, C1QTNF2, MRC2, and GLUL, from the Circadian Gene Expression database, that played a role in circadian rhythm and CRC development. As circadian timing can influence the host tissue's ability to tolerate anticancer medications, the genes reported can serve as a potential drug target for treating CRC and become beneficial to translational settings.


Assuntos
Neoplasias Colorretais , Perfilação da Expressão Gênica , Humanos , Bases de Dados Factuais , Sistemas de Liberação de Medicamentos , Neoplasias Colorretais/genética , Proteínas Adaptadoras de Transdução de Sinal
6.
Med Oncol ; 40(10): 305, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740827

RESUMO

The intricate association of oncogenic markers negatively impacts accurate gastric cancer diagnosis and leads to the proliferation of mortality rate. Molecular heterogeneity is inevitable in determining gastric cancer's progression state with multiple cell types involved. Identification of pathogenic gene signatures is imperative to understand the disease's etiology. This study demonstrates a systematic approach to identifying oncogenic gastric cancer genes linked with different cell types. The raw counts of adjacent normal and gastric cancer samples are subjected to a quality control step. The dimensionality reduction and multidimensional clustering are performed using Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP) techniques. The adjacent normal and gastric cancer sample cell clusters are annotated with the Human Primary Cell Atlas database using the "SingleR." Cellular state transition between the distinct groups is characterized using trajectory analysis. The ligand-receptor interaction between Vascular Endothelial Growth Factor (VEGF) and cell clusters unveils crucial molecular pathways in gastric cancer progression. Chondrocytes, Smooth muscle cells, and fibroblast cell clusters contain genes contributing to poor survival rates based on hazard ratio during survival analysis. The GC-related oncogenic signatures are isolated by comparing the gene set with the DisGeNET database. Twelve gastric cancer biomarkers (SPARC, KLF5, HLA-DRB1, IGFBP3, TIMP3, LGALS1, IGFBP6, COL18A1, F3, COL4A1, PDGFRB, COL5A2) are linked with gastric cancer and further validated through gene set enrichment analysis. Drug-gene interaction found PDGFRB, interacting with various anti-cancer drugs, as a potential inhibitor for gastric cancer. Further investigations on these molecular signatures will assist the development of precision therapeutics, promising longevity among gastric cancer patients.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Transcriptoma , Fator A de Crescimento do Endotélio Vascular
7.
Metab Brain Dis ; 38(6): 2025-2036, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37162726

RESUMO

Alzheimer disease (AD) is a leading cause of dementia in elderly patients who continue to live between 3 and 11 years of diagnosis. A steep rise in AD incidents is observed in the elderly population in East-Asian countries. The disease progresses through several changes, including memory loss, behavioural issues, and cognitive impairment. The etiology of AD is hard to determine because of its complex nature. The whole exome sequences of late-onset AD (LOAD) patients of Korean origin are investigated to identify rare genetic variants that may influence the complex disorder. Computational annotation was performed to assess the function of candidate variants in LOAD. The in silico pathogenicity prediction tools such as SIFT, Polyphen-2, Mutation Taster, CADD, LRT, PROVEAN, DANN, VEST3, fathmm-MKL, GERP + + , SiPhy, phastCons, and phyloP identified around 17 genes harbouring deleterious variants. The variants in the ALDH3A2 and RAD54B genes were pathogenic, while in 15 other genes were predicted to be variants of unknown significance. These variants can be potential risk candidates contributing to AD. In silico computational techniques such as molecular docking, molecular dynamic simulation and steered molecular dynamics were carried out to understand the structural insights of RAD54B with ATP. The simulation of mutant (T459N) RAD54B with ATP revealed reduced binding strength of ATP at its binding site. In addition, lower binding free energy was observed when compared to the wild-type RAD54B. Our study shows that the identified uncommon variants are linked to AD and could be probable predisposing genetic factors of LOAD.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/genética , Exoma/genética , Simulação de Acoplamento Molecular , Análise de Sequência , Trifosfato de Adenosina
8.
Biomed Pharmacother ; 163: 114832, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150032

RESUMO

Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Peptídeos/uso terapêutico , Proteínas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoterapia/métodos
9.
Med Oncol ; 40(5): 149, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37060468

RESUMO

Cervical cancer (CC) is the fourth leading cause of cancer death (~ 324,000 deaths annually) among women internationally, with 85% of these deaths reported in developing regions, particularly sub-Saharan Africa and Southeast Asia. Human papillomavirus (HPV) is considered the major driver of CC, and with the availability of the prophylactic vaccine, HPV-associated CC is expected to be eliminated soon. However, female patients with advanced-stage cervical cancer demonstrated a high recurrence rate (50-70%) within two years of completing radiochemotherapy. Currently, 90% of failures in chemotherapy are during the invasion and metastasis of cancers related to drug resistance. Although molecular target therapies have shown promising results in the lab, they have had little success in patients due to the tumor heterogeneity fueling resistance to these therapies and bypass the targeted signaling pathway. The last two decades have seen the emergence of immunotherapy, especially immune checkpoint blockade (ICB) therapies, as an effective treatment against metastatic tumors. Unfortunately, only a small subgroup of patients (< 20%) have benefited from this approach, reflecting disease heterogeneity and manifestation with primary or acquired resistance over time. Thus, understanding the mechanisms driving drug resistance in CC could significantly improve the quality of medical care for cancer patients and steer them to accurate, individualized treatment. The rise of artificial intelligence and machine learning has also been a pivotal factor in cancer drug discovery. With the advancement in such technology, cervical cancer screening and diagnosis are expected to become easier. This review will systematically discuss the different tumor-intrinsic and extrinsic mechanisms CC cells to adapt to resist current treatments and scheme novel strategies to overcome cancer drug resistance.


Assuntos
Antineoplásicos , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Detecção Precoce de Câncer , Inteligência Artificial , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/terapia
10.
Adv Protein Chem Struct Biol ; 135: 125-177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37061330

RESUMO

Serine/threonine kinases called cyclin-dependent kinases (CDKs) interact with cyclins and CDK inhibitors (CKIs) to control the catalytic activity. CDKs are essential controllers of RNA transcription and cell cycle advancement. The ubiquitous overactivity of the cell cycle CDKs is caused by a number of genetic and epigenetic processes in human cancer, and their suppression can result in both cell cycle arrest and apoptosis. This review focused on CDKs, describing their kinase activity, their role in phosphorylation inhibition, and CDK inhibitory proteins (CIP/KIP, INK 4, RPIC). We next compared the role of different CDKs, mainly p21, p27, p57, p16, p15, p18, and p19, in the cell cycle and apoptosis in cancer cells with respect to normal cells. The current work also draws attention to the use of CDKIs as therapeutics, overcoming the pharmacokinetic barriers of pan-CDK inhibitors, analyze new chemical classes that are effective at attacking the CDKs that control the cell cycle (cdk4/6 or cdk2). It also discusses CDKI's drawbacks and its combination therapy against cancer patients. These findings collectively demonstrate the complexity of cancer cell cycles and the need for targeted therapeutic intervention. In order to slow the progression of the disease or enhance clinical outcomes, new medicines may be discovered by researching the relationship between cell death and cell proliferation.


Assuntos
Proteínas de Ciclo Celular , Quinases Ciclina-Dependentes , Humanos , Proteínas de Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/farmacologia , Ciclo Celular , Apoptose
11.
Adv Protein Chem Struct Biol ; 135: 57-96, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37061341

RESUMO

The regulatory proteins, cyclins, and cyclin-dependent kinases (CDKs) control the cell cycle progression. CDK4 gene mutations are associated with certain cancers such as melanoma, breast cancer, and rhabdomyosarcoma. Therefore, understanding the mechanisms of cell cycle control and cell proliferation is essential in developing cancer treatment regimens. In this study, we obtained cancer-causing CDK4 mutations from the COSMIC database and subjected them to a series of in silico analyses to identify the most significant mutations. An overall of 238 mutations (119 missense mutations) retrieved from the COSMIC database were investigated for the pathogenic and destabilizing properties using the PredictSNP and iStable algorithms. Further, the amino acid position of the most pathogenic and destabilizing mutations were analyzed to understand the nature of amino acid conservation across the species during the evolution. We observed that the missense mutations G201R and G201D were more significant and the Glycine at position 201 was found to highly conserved. These significant mutations were subjected to molecular dynamics simulation analysis to understand the protein's structural changes. The results from molecular dynamics simulations revealed that both G201R and G201D of CDK4 are capable of altering the protein's native form. On comparison among the most significant mutations, G201R disrupted the protein structure higher than the protein with G201D.


Assuntos
Mutação de Sentido Incorreto , Neoplasias , Humanos , Quinase 4 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Aminoácidos
12.
Adv Protein Chem Struct Biol ; 135: 97-124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37061342

RESUMO

Cyclin-dependent kinase 6 (CDK6) is an essential kinase in cell cycle progression, which is a viable target for inhibitors in various malignancies, including breast cancer. This study aimed to virtually screen efficient compounds as new leads in treating breast cancer using a drug repurposing approach. Apoptosis regulatory compounds were taken from the seleckchem database. Molecular docking experiments were carried out in the presence of abemaciclib, a routinely used FDA drug. Compared to conventional drugs, the two compounds demonstrated a higher binding affinity for CDK6. Compounds (N-benzyl-6-[(4-hydroxyphenyl)methyl]-8-(naphthalen-1-ylmethyl)-4,7-dioxo-3,6,9,9a-tetrahydro-2H-pyrazino[1,2-a]pyrimidine-1-carboxamide) and (1'-[4-[1-(4-fluorophenyl)indol-3-yl]butyl]spiro[1H-2-benzofuran-3,4'-piperidine]) were discovered to have an inhibitory effect against CDK6 at -8.49 and -6.78kcal/mol, respectively, compared to -8.09kcal/mol of the control molecule, the interacting residues of these two new compounds were found to fall within the binding site of the CDK6 molecule. Both compounds exhibited equal ADME features compared with abemaciclib and would be well distributed and metabolized by the body with an appropriate druglikeness range. Lastly, molecular dynamics was initiated for 200ns for the selected potent inhibitors and abemaciclib as complexed with CDK6. The RMSD, RMSF, Rg, H-Bond interactions, SASA, PCA, FEL, and MM/PBSA analysis were performed for the complexes to assess the stability, fluctuations, radius of gyration, hydrogen bond interaction, solvent accessibility, essential dynamics, free energy landscape, and MM/PBSA. The selected two compounds are small molecules in the appropriate druglikeness range. The results observed in molecular docking and molecular dynamics simulations were most promising for two compounds, suggesting their potent inhibitory effect against CDK6. We propose that these candidate compounds can undergo in vitro validation and in vivo testing for their further use against cancer.


Assuntos
Neoplasias da Mama , Quinase 6 Dependente de Ciclina , Humanos , Feminino , Simulação de Acoplamento Molecular , Quinase 6 Dependente de Ciclina/uso terapêutico , Reposicionamento de Medicamentos , Simulação de Dinâmica Molecular , Proliferação de Células
13.
Adv Protein Chem Struct Biol ; 134: 147-174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858733

RESUMO

Multiple myeloma (MM) is the 2nd most frequently diagnosed blood cancer after non-Hodgkin's lymphoma. The present study aimed to identify the differentially expressed genes (DEGs) between the control and pristimerin-treated MM cell lines. We examined the GSE14011 microarray dataset and screened DEGs with GEO2R statistical tool using the inbuilt limma package. We used a bioinformatics pipeline to identify the differential networks, signaling cascades, and the survival of the hub genes. We implemented two different enrichment analysis including ClueGO and Metacore™, to get accurate annotation for most significant DEGs. We screened the most significant 408 DEGs from the dataset based on p-values and logFC values. Using protein network analysis, we found the genes UBC, HSP90AB1, HSPH1, HSPA1B, HSPA1L, HSPA6, HSPD1, DNAJB1, HSPE1, DNAJC10, BAG3, and DNAJC7 had higher node degree distribution. In contrast, the functional annotation provided that the DEGs were predominantly enriched in B-cell receptor signaling, unfolded protein response, positive regulation of phagocytosis, HSP70, and HSP40-dependent folding, and ubiquitin-proteasomal proteolysis. Using network algorithms, and comparing enrichment analysis, we found the hub genes enriched were INHBE, UBC, HSPA1A, HSP90AB1, IKBKB, and BAG3. These DEGs were further validated with overall survival and gene expression analysis between the tumor and control groups. Finally, pristimerin effects were validated independently in a cell line model consisting of IM9 and U266 MM cells. Pristimerin induced in vitro cytotoxicity in MM cells in a dose-dependent manner. Pristimerin inhibited NF-κB, induced accumulation of ubiquitinated proteins and inhibited HSP60 in the validation of bioinformatics findings, while pristimerin-induced caspase-3 and PARP cleavage confirmed cell death. Taken together, we found that the identified DEGs were strongly associated with the apoptosis induced in MM cell lines due to pristimerin treatment, and combinatorial therapy derived from pristimerin could act as novel anti-myeloma multifunctional agents.


Assuntos
Mieloma Múltiplo , Transdução de Sinais , Algoritmos , Apoptose , Biologia Computacional , Mieloma Múltiplo/tratamento farmacológico , Linhagem Celular Tumoral , Humanos
14.
J Biomol Struct Dyn ; 41(21): 12338-12346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744526

RESUMO

Epidemiological link between HPV and SLE is evolving. The possibility of HPV infection-induced molecular mimicry and systemic lupus erythematosus (SLE) was elucidated through detailed in silico analyses. Conserved regions in the structural protein sequences of high-risk HPV types were inferred, and sequence homologies between viral and human peptides were identified to delineate proteins implicated in SLE. B-cell epitopes and MHC-class II binding were compiled using Immune Epitope Database and ProPred II analysis tool. Molecular modeling and molecular dynamics/simulation (MDS) were performed using AutoDock Vina and GROMACS, respectively. Sequence alignment revealed 32 conserved regions, and 27/32 viral peptides showed varying similarities to human peptides, rich in B-cell epitopes with superior accessibility, high hydrophilicity, antigenicity and disposition to bind many class-II HLA alleles. Molecular docking of 13 viral peptides homologous (100%) to human peptides implicated in SLE showed that VIR-PEP1 (QLFNKPYWL) and VIR-PEP2 (DTYRFVTS) exhibited higher binding affinities than corresponding human peptides to SLE predisposing HLA-DRB1 allele. MDS of these peptides showed that the viral peptides had superior folding, compactness, and a higher number of hydrogen bonds than human peptides throughout the simulation period. SASA analysis revealed that the VIR-PEP1&2 fluctuated less frequently than corresponding human peptides. MM-PBSA revealed that the VIR-PEP2 complex exhibited higher binding energy than the human peptide complex. This suggests that highly conserved structural peptides of high-risk HPV types homologous to human peptides could compete and bind avidly to the HLA allele associated with SLE and predispose HPV-infected individuals to SLE through molecular mimicry.Communicated by Ramaswamy H. Sarma.


Assuntos
Lúpus Eritematoso Sistêmico , Infecções por Papillomavirus , Humanos , Epitopos de Linfócito B , Mimetismo Molecular , Simulação de Acoplamento Molecular , Peptídeos/química , Epitopos de Linfócito T
15.
Adv Protein Chem Struct Biol ; 133: 351-363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36707205

RESUMO

Wolman disorder (WD) was first described in Iranian-Jewish (IJ) children, and it is caused by a deficiency of the lysosomal acid lipase (LAL). Newborns with WD are healthy and active at birth but soon develop severe malnutrition symptoms and often die before 1 year. In particular, spleens, livers, bone marrows, intestines, adrenal glands, and lymph nodes accumulate harmful amounts of lipids. G87V mutation in LIPA is responsible for Wolman disorder. Some reports suggest that δ-tocopherol can reduce lipid accumulation in cholesterol storage disorders. Hence, we used δ-tocopherol for the virtual screening process in this study. Initially, the lead compounds were docked with native and G87V mutant LIPA. Subsequently, the ADME and toxicity parameters for screened compounds were determined to ensure the safety profiles. Finally, the molecular dynamics simulations result indicated that dl-alpha-Tocopherol-13C3, a molecule obtained from the PubChem database, is identified as a potential and stable lead molecule that could be effective against the G87V mutant form of LIPA.


Assuntos
Doença de Wolman , Criança , Recém-Nascido , Humanos , Doença de Wolman/tratamento farmacológico , Doença de Wolman/genética , Irã (Geográfico) , Esterol Esterase/genética , Lipase/genética , Lipídeos
16.
Adv Protein Chem Struct Biol ; 132: 89-109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36088080

RESUMO

The Neuronal Ceroid Lipofuscinoses (NCL) are a group of progressive neurodegenerative disorders, associated with 14 Ceroid Lipofuscinosis Neuronal genes (CLN1-14). The mutations in the Palmitoyl-Protein Thioesterase 1 (PPT1) protein serve as one of the major reasons for the causative of NCL. The PPT1 involves degrading and modifying cysteine residues in proteins or peptides by removing thioester-linked fatty acyl groups like palmitate prefers acyl chains of 14-18 carbons in length. In this study, we have analyzed the impact of PPT1 mutations on the deleteriousness, stability, conservative nature of amino acid, and impact of mutations on the protein structure. We have also used molecular dynamics simulations using GROMACS to perceive the alteration in the dynamic behavior of the PPT1 at the residual level. In this study, we have retrieved 23 PPT1 mutations from the UniProt database, and these were subjected to a series of analyses using varied computer algorithms. From these analyses, out of 23 mutations, 16 mutations were identified as deleterious. Among 16, eight mutations were identified to destabilize the protein structure, and finally, two mutations (W38C and L222P) were found to be positioned in the highly conserved region. The structural impact study observed that the mutant proline could disrupt the alpha helix formed by the leucine at position 222. Finally, from the molecular dynamics simulations, we observed that due to the mutations (W38C and L222P), the protein had experienced higher deviation, fluctuation, and lower compactness. These structural changes elucidate that these mutations can impact the structure and function of the PPT1 protein.


Assuntos
Lipofuscinoses Ceroides Neuronais , Tioléster Hidrolases/metabolismo , Humanos , Proteínas de Membrana/genética , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Tioléster Hidrolases/química , Tioléster Hidrolases/genética
17.
Adv Protein Chem Struct Biol ; 131: 177-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871890

RESUMO

Esophageal squamous cell carcinoma (ESCC) remains a serious concern globally due to many factors that including late diagnosis, lack of an ideal biomarker for diagnosis and prognosis, and high rate of mortality. In this study, we aimed to identify the essential dysregulated genes and molecular signatures associated with the progression and development of ESCC. The dataset with 15 ESCCs and the 15 adjacent normal tissue samples from the surrounding histopathologically tumor-free mucosa was selected. We applied bioinformatics pipelines including various topological parameters from MCODE, CytoNCA, and cytoHubba to prioritize the most significantly associated DEGs with ESCC. We performed functional enrichment annotation for the identified DEGs using DAVID and MetaCore™ GeneGo platforms. Furthermore, we validated the essential core genes in TCGA and GTEx datasets between the normal mucosa and ESCC for their expression levels. These DEGs were primarily enriched in positive regulation of transferase activity, negative regulation of organelle organization, cell cycle mitosis/S-phase transition, spindle organization/assembly, development, and regulation of angiogenesis. Subsequently, the DEGs were associated with the pathways such as oocyte meiosis, cell cycle, and DNA replication. Our study identified the eight-core genes (AURKA, AURKB, MCM2, CDC20, TPX2, PLK1, FOXM1, and MCM7) that are highly expressed among the ESCC, and TCGA dataset. The multigene comparison and principal component analysis resulted in elevated signals for the AURKA, MCM2, CDC20, TPX2, PLK1, and FOXM1. Overall, our study reported GO profiles and molecular signatures that might help researchers to grasp the pathological mechanisms underlying ESCC development and eventually provide novel therapeutic and diagnostic strategies.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Biologia Computacional/métodos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Transcriptoma/genética
18.
Adv Protein Chem Struct Biol ; 131: 235-259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871892

RESUMO

Multiple Sclerosis (MS) is a neurodegenerative autoimmune and organ-specific demyelinating disorder, known to affect the central nervous system (CNS). While genetic studies have revealed several critical genes and diagnostic biomarkers associated with MS, the etiology of the disease remains poorly understood. This study is aimed at screening and identifying the key genes and canonical pathways associated with MS. Gene expression profiling of the microarray dataset GSE38010 was used to analyze two control brain samples (control 1; GSM931812, control 2; GSM931813), active inflammation stage samples (CAP1; GSM931815, CAP2; GSM931816) and late subsided stage samples (CP1; GSM931817, CP2; GSM931818) collected from patients ranging between 23 and 54years and both genders. This analysis yielded a list of 58,866 DEGs (29,433 for active-inflammation stage and 29,433 for late-subsided Stage). The interactions between the DEGs were then studied using STRING, Cytoscape software, and MCODE was employed to find the genes that form clusters. Functional enrichment and integrative analysis were performed using ClueGO/CluePedia and MetaCore™. Our data revealed dysregulated key canonical pathways in MS patients. In addition, we identified three hub genes (SCN2A, HTR2A, and HCN1) that may serve as potential biomarkers for the prognosis of MS. Furthermore, the expression patterns of HPCA and PLCB1 provide insights into the progressive stages of MS, indicating that these genes could be used in predicting MS progression. We were able to map potential biomarkers that could be used for the prognosis and diagnosis of MS.


Assuntos
Esclerose Múltipla , Biomarcadores/metabolismo , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/genética , Masculino , Análise em Microsséries , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Mapas de Interação de Proteínas/genética
19.
Adv Protein Chem Struct Biol ; 131: 85-164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871897

RESUMO

Over the past decade, conventional lab work strategies have gradually shifted from being limited to a laboratory setting towards a bioinformatics era to help manage and process the vast amounts of data generated by omics technologies. The present work outlines the latest contributions of bioinformatics in analyzing microarray data and their application to cancer. We dissect different microarray platforms and their use in gene expression in cancer models. We highlight how computational advances empowered the microarray technology in gene expression analysis. The study on protein-protein interaction databases classified into primary, derived, meta-database, and prediction databases describes the strategies to curate and predict novel interaction networks in silico. In addition, we summarize the areas of bioinformatics where neural graph networks are currently being used, such as protein functions, protein interaction prediction, and in silico drug discovery and development. We also discuss the role of deep learning as a potential tool in the prognosis, diagnosis, and treatment of cancer. Integrating these resources efficiently, practically, and ethically is likely to be the most challenging task for the healthcare industry over the next decade; however, we believe that it is achievable in the long term.


Assuntos
Biologia Computacional , Neoplasias , Bases de Dados Factuais , Descoberta de Drogas , Humanos , Neoplasias/diagnóstico , Neoplasias/genética
20.
Adv Protein Chem Struct Biol ; 130: 375-397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35534113

RESUMO

Breast cancer type 1 susceptibility protein (BRCA1) is closely related to the BRCA2 (breast cancer type 2 susceptibility protein) and BARD1 (BRCA1-associated RING domain-1) proteins. The homodimers were formed through their RING fingers; however they form more compact heterodimers preferentially, influencing BRCA1 residues 1-109 and BARD1 residues 26-119. We implemented an integrative computational pipeline to screen all the mutations in BRCA1 and identify the most significant mutations influencing the Protein-Protein Interactions (PPI) in the BRCA1-BARD1 protein complex. The amino acids involved in the PPI regions were identified from the PDBsum database with the PDB ID: 1JM7. We screened 2118 missense mutations in BRCA1 and none in BARD1 for pathogenicity and stability and analyzed the amino acid sequences for conserved residues. We identified the most significant mutations from these screenings as V11G, M18K, L22S, and T97R positioned in the PPI regions of the BRCA1-BARD1 protein complex. We further performed protein-protein docking using the ZDOCK server. The native protein-protein complex showed the highest binding score of 2118.613, and the V11G mutant protein complex showed the least binding score of 1992.949. The other three mutation protein complexes had binding scores between the native and V11G protein complexes. Finally, a molecular dynamics simulation study using GROMACS was performed to comprehend changes in the BRCA1-BARD1 complex's binding pattern due to the mutation. From the analysis, we observed the highest deviation with lowest compactness and a decrease in the intramolecular h-bonds in the BRCA1-BARD1 protein complex with the V11G mutation compared to the native complex or the complexes with other mutations.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Sequência de Aminoácidos , Proteína BRCA1/química , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias da Mama/genética , Feminino , Humanos , Mutação , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA