Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ocul Pharmacol Ther ; 40(7): 459-466, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38899506

RESUMO

Purpose: The present study aimed to determine the dose-response relationship between targeted nanocarriers released from a novel, sustained release formulation and their ability to specifically deplete cells responsible for the development of posterior capsular opacification (PCO) in month-long, dynamic cell cultures. Methods: Injectable, thermosensitive poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic-co-glycolic acid) triblock copolymer hydrogels were loaded with either a low or a high dose of doxorubicin-loaded antibody-targeted nanocarriers (G8:3DNA:Dox). Human rhabdomyosarcoma cells, selected for their expression of PCO marker brain-specific angiogenesis inhibitor 1 (BAI1), were kept under dynamic media flow and received either a low or high dose of nanocarriers. Cells were fixed and stained at predetermined time points to evaluate targeted depletion of BAI1+ cells. Results: A lower dose of nanocarriers in hydrogel depleted BAI1+ cells at a slower rate than the higher dose, whereas both reached over 90% BAI1+ cellular nonviability at 28 days. Both treatment groups also significantly lowered the relative abundance of BAI1+ cells in the population compared with the control group. Conclusions: Controlled release of a lower dose of nanocarriers can still achieve therapeutically relevant effects in the prevention of PCO, while avoiding potential secondary effects associated with the administration of a higher dose.


Assuntos
Preparações de Ação Retardada , Relação Dose-Resposta a Droga , Doxorrubicina , Portadores de Fármacos , Nanopartículas , Humanos , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/administração & dosagem , Hidrogéis/química , Hidrogéis/administração & dosagem , Catarata/tratamento farmacológico , Ácidos Nucleicos/administração & dosagem , Linhagem Celular Tumoral , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/patologia , Polietilenoglicóis/química , Polietilenoglicóis/administração & dosagem , Sistemas de Liberação de Medicamentos
2.
Cells ; 12(13)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37443759

RESUMO

Herein, we review a unique and versatile lineage composed of Myo/Nog cells that may be beneficial or detrimental depending on their environment and nature of the pathological stimuli they are exposed to. While we will focus on the lens, related Myo/Nog cell behaviors and functions in other tissues are integrated into the narrative of our research that spans over three decades, examines multiple species and progresses from early stages of embryonic development to aging adults. Myo/Nog cells were discovered in the embryonic epiblast by their co-expression of the skeletal muscle-specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin and brain-specific angiogenesis inhibitor 1. They were tracked from the epiblast into the developing lens, revealing heterogeneity of cell types within this structure. Depletion of Myo/Nog cells in the epiblast results in eye malformations arising from the absence of Noggin. In the adult lens, Myo/Nog cells are the source of myofibroblasts whose contractions produce wrinkles in the capsule. Eliminating this population within the rabbit lens during cataract surgery reduces posterior capsule opacification to below clinically significant levels. Parallels are drawn between the therapeutic potential of targeting Myo/Nog cells to prevent fibrotic disease in the lens and other ocular tissues.


Assuntos
Opacificação da Cápsula , Cristalino , Animais , Coelhos , Cristalino/metabolismo , Opacificação da Cápsula/metabolismo , Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação da Expressão Gênica
3.
J Ocul Pharmacol Ther ; 38(6): 404-411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35377237

RESUMO

Purpose: To compare a novel, sustained release formulation and a bolus injection of a targeted nanocarrier for the ability to specifically deplete cells responsible for the development of posterior capsule opacification (PCO) in week-long, dynamic cell cultures. Methods: A novel, injectable, thermosensitive poly(D,L-lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymer hydrogel was engineered for the sustained release of targeted, nucleic acid nanocarriers loaded with cytotoxic doxorubicin (G8:3DNA:Dox). Human rhabdomyosarcoma (RD) cells were used due to their expression of brain-specific angiogenesis inhibitor 1 (BAI1), a specific marker for the myofibroblasts responsible for PCO. Under constant media flow, nanocarriers were injected into cell cultures as either a bolus or within the hydrogel. Cells were fixed and stained every other day for 7 days to compare targeted depletion of BAI1+ cells. Results: The formulation transitions to a gel at physiological temperatures, is optically clear, noncytotoxic, and can release G8:3DNA:Dox nanocarriers for up to 4 weeks. In RD cell cultures, G8:3DNA:Dox nanocarriers specifically eliminated BAI1+ cells. The bolus nanocarrier dose showed significantly reduced cell depletion overtime, while the sustained release of nanocarriers showed increased cell depletion over time. By day 7, <2% of BAI1+ cells were depleted by the bolus injection and 74.2% BAI1+ cells were targeted by the sustained release of nanocarriers. Conclusions: The sustained release of nanocarriers from the hydrogel allows for improved therapeutic delivery in a dynamic system. This method can offer a more effective and efficient method of prophylactically treating PCO after cataract surgery.


Assuntos
Opacificação da Cápsula , Hidrogéis , DNA , Preparações de Ação Retardada , Doxorrubicina , Humanos , Ácido Láctico , Polietilenoglicóis
4.
Invest Ophthalmol Vis Sci ; 60(6): 1813-1823, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042787

RESUMO

Purpose: Posterior capsule opacification (PCO) is a vision-impairing disease that occurs in some adults and most children after cataract surgery. Contractile myofibroblasts contribute to PCO by producing wrinkles in the lens capsule that scatter light. Myofibroblasts in the lens originate from Myo/Nog cells named for their expression of the MyoD transcription factor and bone morphogenetic protein inhibitor noggin. In this study we tested the effects of depleting Myo/Nog cells on development of PCO. Methods: Myo/Nog cells were eliminated by injecting the G8 antibody conjugated to 3DNA nanocarriers for the cytotoxin doxorubicin (G8:3DNA:Dox) during cataract surgery in rabbits. The severity of PCO was scored by slit lamp analysis, gross and histologic observation, and immunofluorescence localization of α-smooth muscle actin. Results: G8:3DNA:Dox specifically induced cell death in Myo/Nog cells in the lens. None of the lenses administered G8:3DNA containing 9 to 36 µM doxorubicin developed greater than trace levels of central PCO and few myofibroblasts were present on the capsule. Less than 9% of these lenses exhibited greater than mild levels of peripheral PCO. Doxorubucin itself reduced PCO; however, myofibroblasts and wrinkles were abundant in the lens, and off-target effects were observed in the ciliary processes and cornea. Conclusions: Myo/Nog cells are the primary source of myofibroblasts in the lens after cataract surgery. Targeted depletion of Myo/Nog cells has potential for preventing PCO and preserving vision.


Assuntos
Opacificação da Cápsula/patologia , Proteínas de Transporte/metabolismo , Proteína MyoD/metabolismo , Miofibroblastos/patologia , Cápsula Posterior do Cristalino/patologia , Animais , Opacificação da Cápsula/metabolismo , Modelos Animais de Doenças , Feminino , Miofibroblastos/metabolismo , Cápsula Posterior do Cristalino/metabolismo , Coelhos
5.
PLoS One ; 14(4): e0214758, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30973903

RESUMO

Myo/Nog cells are identified by their expression of the skeletal muscle specific transcription factor MyoD and the bone morphogenetic protein inhibitor noggin, and binding of the G8 monoclonal antibody. Their release of noggin is critical for morphogenesis and skeletal myogenesis. In the adult, Myo/Nog cells are present in normal tissues, wounds and skin tumors. Myo/Nog cells in the lens give rise to myofibroblasts that synthesize skeletal muscle proteins. The purpose of this study was to screen human lens tissue, rhabdomyosarcoma cell lines, and tissue sections from rhabdomyosarcoma, Wilms and tumors lacking features of skeletal muscle for co-localization of antibodies to Myo/Nog cell markers and the lens beaded filament proteins filensin and CP49. Immunofluorescence localization experiments revealed that Myo/Nog cells of the lens bind antibodies to beaded filament proteins. Co-localization of antibodies to G8, noggin, filensin and CP49 was observed in most RC13 and a subpopulation of RD human rhabdomyosarcoma cell lines. Western blotting with beaded filament antibodies revealed bands of similar molecular weights in RC13 and murine lens cells. Human alveolar, embryonal, pleomorphic and spindle cell rhabdomyosarcomas and Wilms tumors contained a subpopulation of cells immunoreactive for G8, noggin, MyoD and beaded filaments. G8 was also co-localized with filensin mRNA. Staining for beaded filament proteins was not detected in G8 positive cells in leiomyosarcomas, squamous and basal cell carcinomas, syringocarciomas and malignant melanomas. Lens beaded filament proteins were thought to be present only in the lens. Myo/Nog-like cells immunoreactive for beaded filaments may be diagnostic of tumors related to the skeletal muscle lineage.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Olho/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Proteína MyoD/metabolismo , Rabdomiossarcoma/patologia , Tumor de Wilms/patologia , Animais , Anticorpos Monoclonais/imunologia , Proteínas de Transporte/imunologia , Linhagem Celular , Proteínas do Olho/genética , Proteínas do Olho/imunologia , Humanos , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/imunologia , Cristalino/citologia , Cristalino/metabolismo , Camundongos , Microscopia de Fluorescência , Proteína MyoD/imunologia , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma Embrionário/metabolismo , Rabdomiossarcoma Embrionário/patologia , Tumor de Wilms/metabolismo
6.
Exp Eye Res ; 171: 101-105, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29559302

RESUMO

Myo/Nog cells, named for their expression of MyoD and noggin, enter the eye during early stages of embryonic development. Their release of noggin is critical for normal morphogenesis of the lens and retina. Myo/Nog cells are also present in adult eyes. Single nucleated skeletal muscle cells designated as myofibroblasts arise from Myo/Nog cells in cultures of lens tissue. In this report we document the presence of Myo/Nog cells in the lens, ciliary body and on the zonule of Zinn in mice, rabbits and humans. Myo/Nog cells were rare in all three structures. Their prevalence increased in the lens and ciliary body of rabbits 24 h following cataract surgery. Rabbits developed posterior capsule opacification (PCO) within one month of surgery. The number of Myo/Nog cells continued to be elevated in the lens and ciliary body. Myo/Nog cells containing alpha smooth muscle actin and striated muscle myosin were present on the posterior capsule and overlaid deformations in the capsule. Myo/Nog cells also were present on the zonule fibers and external surface of the posterior capsule. These findings suggest that Myo/Nog contribute to PCO and may use the zonule fibers to migrate between the ciliary processes and lens.


Assuntos
Proteínas de Transporte/metabolismo , Corpo Ciliar/metabolismo , Cristalino/metabolismo , Ligamentos/metabolismo , Proteína MyoD/metabolismo , Facoemulsificação , Cápsula Posterior do Cristalino/metabolismo , Actinas/metabolismo , Animais , Opacificação da Cápsula/metabolismo , Feminino , Fibrilina-1/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Miosinas/metabolismo , Coelhos , Vimentina/metabolismo
7.
Dose Response ; 16(4): 1559325818803428, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627064

RESUMO

This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system 'acquired resilience'. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life.

8.
J Pharmacol Exp Ther ; 361(1): 60-67, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28096456

RESUMO

Posterior capsule opacification (PCO) occurs in some adults and most children following cataract surgery. The fibrotic form of PCO arises, in part, from migratory, contractile myofibroblasts that deform the lens capsule and impair vision. In short-term cultures of human anterior lens tissue, myofibroblasts emerge from Myo/Nog cells that are identified with the G8 monoclonal antibody and by their expression of the MyoD transcription factor and bone morphogenetic protein inhibitor noggin. In this study, we tested the hypothesis that targeted depletion of Myo/Nog cells with the G8 monoclonal antibody (mAb) conjugated to three-dimensional DNA nanocarriers intercalated with doxorubicin (G8:3DNA:Dox) would prevent the accumulation of myofibroblasts in long-term, serum- and growth factor-free cultures of human lens tissue obtained by capsulorhexis. The mAb:nanocarrier complex was internalized into acidic compartments of the cell. G8:3DNA:Dox killed nearly all Myo/Nog cells without affecting the lens epithelial cells. In 30-day cultures, all G8-positive cells expressed noggin, and subpopulations had synthesized MyoD, sarcomeric myosin, and alpha smooth muscle actin (α-SMA). Myo/Nog cells responded to scratching of the lens epithelium by accumulating around the edges of the wound. Treatment with two doses of G8:3DNA:Dox completely eliminated G8+/α-SMA+ cells throughout the explant. These experiments demonstrate that Myo/Nog cells are the source of myofibroblasts in long-term cultures of anterior human lens tissue and mAb:3DNA nanocarriers specifically and effectively deliver cytotoxic cargo to a subpopulation of cells without off-target effects. G8:3DNA:Dox has the potential to reduce PCO following cataract surgery.


Assuntos
Anticorpos Monoclonais/administração & dosagem , DNA/administração & dosagem , Doxorrubicina/administração & dosagem , Cristalino/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Nanoestruturas/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/metabolismo , DNA/metabolismo , Doxorrubicina/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Cristalino/citologia , Cristalino/metabolismo , Masculino , Pessoa de Meia-Idade , Miofibroblastos/metabolismo , Técnicas de Cultura de Órgãos
9.
PLoS One ; 9(4): e95262, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736495

RESUMO

Posterior capsule opacification (PCO) is a vision impairing condition that arises in some patients following cataract surgery. The fibrotic form of PCO is caused by myofibroblasts that may emerge in the lens years after surgery. In the chick embryo lens, myofibroblasts are derived from Myo/Nog cells that are identified by their expression of the skeletal muscle specific transcription factor MyoD, the bone morphogenetic protein inhibitor Noggin, and the epitope recognized by the G8 monoclonal antibody. The goal of this study was to test the hypothesis that depletion of Myo/Nog cells will prevent the accumulation of myofibroblasts in human lens tissue. Myo/Nog cells were present in anterior, equatorial and bow regions of the human lens, cornea and ciliary processes. In anterior lens tissue removed by capsulorhexis, Myo/Nog cells had synthesized myofibroblast and skeletal muscle proteins, including vimentin, MyoD and sarcomeric myosin. Alpha smooth muscle actin (α-SMA) was detected in a subpopulation of Myo/Nog cells. Areas of the capsule denuded of epithelial cells were surrounded by Myo/Nog cells. Some of these cell free areas contained a wrinkle in the capsule. Depletion of Myo/Nog cells eliminated cells expressing skeletal muscle proteins in 5-day cultures but did not affect cells immunoreactive for beaded filament proteins that accumulate in differentiating lens epithelial cells. Transforming growth factor-betas 1 and 2 that mediate an epithelial-mesenchymal transition, did not induce the expression of skeletal muscle proteins in lens cells following Myo/Nog cell depletion. This study demonstrates that Myo/Nog cells in anterior lens tissue removed from cataract patients have undergone a partial differentiation to skeletal muscle. Myo/Nog cells appear to be the source of skeletal muscle-like cells in explants of human lens tissue. Targeting Myo/Nog cells with the G8 antibody during cataract surgery may reduce the incidence of PCO.


Assuntos
Capsulorrexe/efeitos adversos , Proteínas de Transporte/metabolismo , Cristalino/citologia , Músculo Esquelético/citologia , Proteína MyoD/metabolismo , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Contagem de Células , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo
10.
Exp Dermatol ; 21(6): 466-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22621191

RESUMO

Murine and human skin were examined for the presence of Myo/Nog cells that were originally discovered in the chick embryo by their expression of MyoD mRNA, noggin and the G8 antigen. Myo/Nog cells are the primary source of noggin in telogen hair follicles. They are scarce within the interfollicular dermis and absent in the epidermis. Within 24 h following epidermal abrasion, Myo/Nog cells increase in number in the follicles and appear in the wound. Myo/Nog cells are also recruited to the stroma of tumors formed from v-Ras-transformed keratinocytes (Ker/Ras). Human squamous cell carcinomas and malignant melanomas contain significantly more Myo/Nog cells than basal cell carcinomas. Myo/Nog cells are distinct from macrophages, granulocytes and cells expressing alpha smooth muscle actin in the tumor stroma. Myo/Nog cells may be modulators of skin homoeostasis and wound healing, and potential diagnostic and therapeutic targets in skin cancer.


Assuntos
Proteínas de Transporte/metabolismo , Proteína MyoD/metabolismo , Neoplasias Cutâneas/metabolismo , Pele/metabolismo , Ferimentos e Lesões/metabolismo , Animais , Carcinoma Basocelular/metabolismo , Carcinoma de Células Escamosas/metabolismo , Humanos , Melanoma/metabolismo , Camundongos
11.
Proc Natl Acad Sci U S A ; 107(31): 13730-5, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20634425

RESUMO

We investigated an alternative pathway for emergence of the mesenchymal cells involved in epithelial sheet wound healing and a source of myofibroblasts that cause fibrosis. Using a mock cataract surgery model, we discovered a unique subpopulation of polyploid mesenchymal progenitors nestled in small niches among lens epithelial cells that expressed the surface antigen G8 and mRNA for the myogenic transcription factor MyoD. These cells rapidly responded to wounding of the lens epithelium with population expansion, acquisition of a mesenchymal phenotype, and migration to the wound edges where they regulate the wound response of the epithelium. These mesenchymal cells also were a principal source of myofibroblasts that emerged following lens injury and were responsible for fibrotic disease of the lens that occurs following cataract surgery. These studies provide insight into the mechanisms of wound-healing and fibrosis.


Assuntos
Células-Tronco Mesenquimais/citologia , Cicatrização , Animais , Antígenos de Superfície/metabolismo , Diferenciação Celular , Embrião de Galinha , Fibrose/genética , Fibrose/metabolismo , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Proteína MyoD/genética
12.
J Cell Biol ; 175(2): 283-92, 2006 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17060497

RESUMO

MyoD mRNA is expressed in a subpopulation of cells within the embryonic epiblast. Most of these cells are incorporated into somites and synthesize Noggin. Ablation of MyoD-positive cells in the epiblast subsequently results in the herniation of organs through the ventral body wall, a decrease in the expression of Noggin, MyoD, Myf5, and myosin in the somites and limbs, and an increase in Pax-3-positive myogenic precursors. The addition of Noggin lateral to the somites compensates for the loss of MyoD-positive epiblast cells. Skeletal muscle stem cells that arise in the epiblast are utilized in the somites to promote muscle differentiation by serving as a source of Noggin.


Assuntos
Diferenciação Celular/fisiologia , Embrião de Mamíferos/citologia , Embrião não Mamífero , Epitélio/fisiologia , Músculo Esquelético/citologia , Proteína MyoD/fisiologia , Animais , Proteínas de Transporte/metabolismo , Embrião de Galinha , Embrião de Mamíferos/fisiologia , Epitélio/anatomia & histologia , Extremidades , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Morfogênese , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Fator Regulador Miogênico 5/metabolismo , Miosinas/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Somitos/metabolismo , Células-Tronco/química , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA