Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 143(21): 2152-2165, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38437725

RESUMO

ABSTRACT: Effective T-cell responses not only require the engagement of T-cell receptors (TCRs; "signal 1"), but also the availability of costimulatory signals ("signal 2"). T-cell bispecific antibodies (TCBs) deliver a robust signal 1 by engaging the TCR signaling component CD3ε, while simultaneously binding to tumor antigens. The CD20-TCB glofitamab redirects T cells to CD20-expressing malignant B cells. Although glofitamab exhibits strong single-agent efficacy, adding costimulatory signaling may enhance the depth and durability of T-cell-mediated tumor cell killing. We developed a bispecific CD19-targeted CD28 agonist (CD19-CD28), RG6333, to enhance the efficacy of glofitamab and similar TCBs by delivering signal 2 to tumor-infiltrating T cells. CD19-CD28 distinguishes itself from the superagonistic antibody TGN1412, because its activity requires the simultaneous presence of a TCR signal and CD19 target binding. This is achieved through its engineered format incorporating a mutated Fc region with abolished FcγR and C1q binding, CD28 monovalency, and a moderate CD28 binding affinity. In combination with glofitamab, CD19-CD28 strongly increased T-cell effector functions in ex vivo assays using peripheral blood mononuclear cells and spleen samples derived from patients with lymphoma and enhanced glofitamab-mediated regression of aggressive lymphomas in humanized mice. Notably, the triple combination of glofitamab with CD19-CD28 with the costimulatory 4-1BB agonist, CD19-4-1BBL, offered substantially improved long-term tumor control over glofitamab monotherapy and respective duplet combinations. Our findings highlight CD19-CD28 as a safe and highly efficacious off-the-shelf combination partner for glofitamab, similar TCBs, and other costimulatory agonists. CD19-CD28 is currently in a phase 1 clinical trial in combination with glofitamab. This trial was registered at www.clinicaltrials.gov as #NCT05219513.


Assuntos
Anticorpos Biespecíficos , Antígenos CD19 , Antígenos CD20 , Antígenos CD28 , Imunoterapia , Humanos , Antígenos CD28/imunologia , Antígenos CD28/agonistas , Animais , Camundongos , Anticorpos Biespecíficos/farmacologia , Antígenos CD19/imunologia , Antígenos CD20/imunologia , Imunoterapia/métodos , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos NOD
2.
MAbs ; 15(1): 2245111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608616

RESUMO

Antibody-cytokine fusions targeted against tumor-associated antigens (TAAs) are promising cancer immunotherapy agents, with many such molecules currently undergoing clinical trials. However, due to the limited number of tumor-specific targets, on-target off-tumor effects can lead to systemic toxicity. Additionally, targeted cytokines can be scavenged by cytokine receptors on peripheral cells, decreasing tumor penetration. This study aims at overcoming these issues by engineering a platform for targeted conditionally active type I cytokines. Building on our previously reported PACE (Prodrug-Activating Chain Exchange) platform, we split the type I cytokine interleukin-4 (IL-4) to create two inactive IL-4 prodrugs, and fused these split IL-4 counterparts to the C-termini of antibody-like molecules that undergo proximity-induced chain exchange. In doing so, we developed IL-4 prodrugs that preferentially reconstitute into active IL-4 on target cells. We demonstrate that pre-assembled split IL-4 (without additional inactivation) retains activity and present two different strategies of splitting and inactivating IL-4. Using an IL-4 responsive cell-line, we show that IL-4 prodrugs are targeted to TAAs on target cells and regain activity upon chain exchange, primarily in a cis-activation setting. Furthermore, we demonstrate that split IL-4 complementation is also possible in a trans-activation setting, which opens up the possibility for activation of immune cells in the tumor vicinity. We demonstrate that targeted on-cell prodrug conversion is more efficient than nonspecific activation in-solution. Due to the structural similarity between IL-4 and other type I cytokines relevant in cancer immunotherapy such as IL-2, IL-15, and IL-21, cytokine-PACE may be expanded to develop a variety of targeted conditionally active cytokines for cancer immunotherapy.


Assuntos
Neoplasias , Pró-Fármacos , Humanos , Citocinas , Interleucina-4 , Pró-Fármacos/farmacologia , Neoplasias/terapia , Antígenos de Neoplasias , Anticorpos , Imunoterapia
3.
Biol Chem ; 403(5-6): 495-508, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35073465

RESUMO

Driven by the potential to broaden the target space of conventional monospecific antibodies, the field of multi-specific antibody derivatives is growing rapidly. The production and screening of these artificial proteins entails a high combinatorial complexity. Antibody-domain exchange was previously shown to be a versatile strategy to produce bispecific antibodies in a robust and efficient manner. Here, we show that the domain exchange reaction to generate hybrid antibodies also functions under physiological conditions. Accordingly, we modified the exchange partners for use in therapeutic applications, in which two inactive prodrugs convert into a product with additional functionalities. We exemplarily show the feasibility for generating active T cell bispecific antibodies from two inactive prodrugs, which per se do not activate T cells alone. The two complementary prodrugs harbor antigen-targeting Fabs and non-functional anti-CD3 Fvs fused to IgG-CH3 domains engineered to drive chain-exchange reactions between them. Importantly, Prodrug-Activating Chain Exchange (PACE) could be an attractive option to conditionally activate therapeutics at the target site. Several examples are provided that demonstrate the efficacy of PACE as a new principle of cancer immunotherapy in vitro and in a human xenograft model.


Assuntos
Anticorpos Biespecíficos , Pró-Fármacos , Humanos , Imunoterapia , Pró-Fármacos/farmacologia , Linfócitos T
4.
Comput Struct Biotechnol J ; 18: 1221-1227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32542108

RESUMO

Multispecific antibodies can be generated in different formats. More than two decades of R&D in the field of bispecific antibody engineering revealed that the design and choice of format can have a profound impact on the antibody functionality. This holds in particular true for entities that elicit (inter-)cellular processes such as receptor activation, receptor internalization, receptor clustering or the formation of immunological synapses between two cells. This review covers design parameters that influence the functionality of multispecific formats, with particular focus on T cell-recruiting bispecific antibodies. We describe formats that display the same size and domain sequences but a varying geometry. The structural composition of (artificial) immune synapses is reviewed and allows conclusions why some formats that share size and domain composition are more effective than others. To support the statement that the geometry matters, we present a recently designed antibody format that is characterized by its compact shape. The TriFab-Contorsbody consists of two tumor cell-targeting entities and one moiety for T cell recruitment. The unique barrel-like shape provides a 35-fold increase in potency compared to an IgG-like molecule with identical domain sequences.

5.
ACS Chem Biol ; 14(1): 37-49, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452219

RESUMO

The importance of Discoidin Domain Receptor 1 (DDR1) in renal fibrosis has been shown via gene knockout and use of antisense oligonucleotides; however, these techniques act via a reduction of DDR1 protein, while we prove the therapeutic potential of inhibiting DDR1 phosphorylation with a small molecule. To date, efforts to generate a selective small-molecule to specifically modulate the activity of DDR1 in an in vivo model have been unsuccessful. We performed parallel DNA encoded library screens against DDR1 and DDR2, and discovered a chemical series that is highly selective for DDR1 over DDR2. Structure-guided optimization efforts yielded the potent DDR1 inhibitor 2.45, which possesses excellent kinome selectivity (including 64-fold selectivity over DDR2 in a biochemical assay), a clean in vitro safety profile, and favorable pharmacokinetic and physicochemical properties. As desired, compound 2.45 modulates DDR1 phosphorylation in vitro as well as prevents collagen-induced activation of renal epithelial cells expressing DDR1. Compound 2.45 preserves renal function and reduces tissue damage in Col4a3-/- mice (the preclinical mouse model of Alport syndrome) when employing a therapeutic dosing regime, indicating the real therapeutic value of selectively inhibiting DDR1 phosphorylation in vivo. Our results may have wider significance as Col4a3-/- mice also represent a model for chronic kidney disease, a disease which affects 10% of the global population.


Assuntos
DNA/genética , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Rim/fisiopatologia , Nefrite Hereditária/genética , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Testes de Função Renal , Camundongos , Camundongos Knockout , Nefrite Hereditária/fisiopatologia , Fosforilação , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
6.
J Transl Med ; 16(1): 148, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859097

RESUMO

BACKGROUND: Discoidin domain receptor 1 (DDR1) is a collagen-activated receptor tyrosine kinase extensively implicated in diseases such as cancer, atherosclerosis and fibrosis. Multiple preclinical studies, performed using either a gene deletion or a gene silencing approaches, have shown this receptor being a major driver target of fibrosis and glomerulosclerosis. METHODS: The present study investigated the role and relevance of DDR1 in human crescentic glomerulonephritis (GN). Detailed DDR1 expression was first characterized in detail in human GN biopsies using a novel selective anti-DDR1 antibody using immunohistochemistry. Subsequently the protective role of DDR1 was investigated using a highly selective, novel, small molecule inhibitor in a nephrotoxic serum (NTS) GN model in a prophylactic regime and in the NEP25 GN mouse model using a therapeutic intervention regime. RESULTS: DDR1 expression was shown to be mainly limited to renal epithelium. In humans, DDR1 is highly induced in injured podocytes, in bridging cells expressing both parietal epithelial cell (PEC) and podocyte markers and in a subset of PECs forming the cellular crescents in human GN. Pharmacological inhibition of DDR1 in NTS improved both renal function and histological parameters. These results, obtained using a prophylactic regime, were confirmed in the NEP25 GN mouse model using a therapeutic intervention regime. Gene expression analysis of NTS showed that pharmacological blockade of DDR1 specifically reverted fibrotic and inflammatory gene networks and modulated expression of the glomerular cell gene signature, further validating DDR1 as a major mediator of cell fate in podocytes and PECs. CONCLUSIONS: Together, these results suggest that DDR1 inhibition might be an attractive and promising pharmacological intervention for the treatment of GN, predominantly by targeting the renal epithelium.


Assuntos
Receptor com Domínio Discoidina 1/antagonistas & inibidores , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/prevenção & controle , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Receptor com Domínio Discoidina 1/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Epitélio/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Glomerulonefrite/genética , Glomerulonefrite/patologia , Humanos , Inflamação/patologia , Rim/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Fenótipo
7.
Mol Cancer Ther ; 15(9): 2130-42, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27353170

RESUMO

Bifunctional antibody fusion proteins engaging effector T cells for targeted elimination of tumor cells via CD3 binding have shown efficacy in both preclinical and clinical studies. Different from such a polyclonal T-cell recruitment, an alternative concept is to engage only antigen-specific T-cell subsets. Recruitment of specific subsets of T cells may be as potent but potentially lead to fewer side effects. Tumor-targeted peptide-MHC class I complexes (pMHCI-IgGs) bearing known antigenic peptides complexed with MHC class I molecules mark tumor cells as antigenic and utilize the physiologic way to interact with and activate T-cell receptors. If, for example, virus-specific CD8(+) T cells are addressed, the associated strong antigenicity and tight immune surveillance of the effector cells could lead to efficacious antitumor treatment in various tissues. However, peptide-MHC class I fusions are difficult to express recombinantly, especially when fused to entire antibody molecules. Consequently, current formats are largely limited to small antibody fragment fusions expressed in bacteria followed by refolding or chemical conjugation. Here, we describe a new molecular format bearing a single pMHCI complex per IgG fusion molecule characterized by enhanced stability and expression yields. This molecular format can be expressed in a full immunoglobulin format and can be designed as mono- or bivalent antibody binders. Mol Cancer Ther; 15(9); 2130-42. ©2016 AACR.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunoglobulina G/imunologia , Ativação Linfocitária/imunologia , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos/imunologia , Peptídeos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Ligação Proteica , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/metabolismo
8.
FASEB J ; 29(5): 1763-79, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25670234

RESUMO

Humanized hapten-binding IgGs were designed with an accessible cysteine close to their binding pockets, for specific covalent payload attachment. Individual analyses of known structures of digoxigenin (Dig)- and fluorescein (Fluo) binding antibodies and a new structure of a biotin (Biot)-binder, revealed a "universal" coupling position (52(+2)) in proximity to binding pockets but without contributing to hapten interactions. Payloads that carry a free thiol are positioned on the antibody and covalently linked to it via disulfides. Covalent coupling is achieved and driven toward complete (95-100%) payload occupancy by spontaneous redox shuffling between antibody and payload. Attachment at the universal position works with different haptens, antibodies, and payloads. Examples are the haptens Fluo, Dig, and Biot combined with various fluorescent or peptidic payloads. Disulfide-bonded covalent antibody-payload complexes do not dissociate in vitro and in vivo. Coupling requires the designed cysteine and matching payload thiol because payload or antibody without the Cys/thiol are not linked (<5% nonspecific coupling). Hapten-mediated positioning is necessary as hapten-thiol-payload is only coupled to antibodies that bind matching haptens. Covalent complexes are more stable in vivo than noncovalent counterparts because digoxigeninylated or biotinylated fluorescent payloads without disulfide-linkage are cleared more rapidly in mice (approximately 50% reduced 48 hour serum levels) compared with their covalently linked counterparts. The coupling technology is applicable to many haptens and hapten binding antibodies (confirmed by automated analyses of the structures of 140 additional hapten binding antibodies) and can be applied to modulate the pharmacokinetics of small compounds or peptides. It is also suitable to link payloads in a reduction-releasable manner to tumor- or tissue-targeting delivery vehicles.


Assuntos
Anticorpos/imunologia , Dissulfetos/imunologia , Haptenos/imunologia , Fragmentos de Peptídeos/imunologia , Animais , Anticorpos/química , Anticorpos/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Haptenos/química , Haptenos/metabolismo , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Compostos de Sulfidrila/química , Compostos de Sulfidrila/imunologia , Compostos de Sulfidrila/metabolismo
9.
Cancer Immunol Res ; 3(7): 764-76, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25691327

RESUMO

Tumor cells escape immune eradication through multiple mechanisms, including loss of antigenicity and local suppression of effector lymphocytes. To counteract these obstacles, we aimed to direct the unique cytomegalovirus (CMV)-specific immune surveillance against tumor cells. We developed a novel generation of fusion proteins composed of a tumor antigen-specific full immunoglobulin connected to a single major histocompatibility class I complex bearing a covalently linked virus-derived peptide (pMHCI-IgG). Here, we show that tumor antigen-expressing cancer cells, which are decorated with pMHCI-IgGs containing a HLA-A*0201 molecule associated with a CMV-derived peptide, are specifically eliminated through engagement of antigen-specific CD8(+) T cells isolated from peripheral blood mononuclear cell preparations of CMV-infected humans. These CD8(+) T cells act without additional expansion, preactivation, or provision of costimulatory signals. Elimination of tumor cells is induced at similar concentrations and with similar time kinetics as those seen with bispecific T-cell engagers (BiTE). However, while BiTE-like reagents indiscriminately activate T cells through binding to the T-cell receptor complex, pMHCI-IgGs selectively engage antigen-specific, constantly renewable, differentiated effector cytotoxic T lymphocytes to tumor cells, thereby representing a novel class of anticancer immunotherapeutics with potentially improved safety and efficacy profiles.


Assuntos
Citomegalovirus/imunologia , Antígeno HLA-A2/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Leucócitos Mononucleares/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Anticorpos/imunologia , Linhagem Celular Tumoral , Humanos , Ativação Linfocitária/imunologia , Camundongos , Peptídeos/imunologia
10.
Cancer Genomics Proteomics ; 11(6): 267-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25422358

RESUMO

Tumor-related antigens can be presented as peptides forming complexes with major histocompatibility complex (MHC) molecules that interact with T-cell receptors, thus generating an immunologic anti-tumor response. Unfortunately, however, this response can be decreased by many effectors and pathways. On the other hand, such peptide-MHC complexes are unique starting points for therapeutic intervention. We present strategies for eliciting an anti-tumoral response by T-cell receptor-based fusion proteins with interleukin (IL)2 and antibody constant region domains, superantigens, and T-cell recruiting antibodies, as well as using genetically modified autologous T-cells as effectors. Another strategy is to direct peptide-MHC complexes to tumors as fusion proteins with an antibody-derived targeting moiety. Finally, we describe T-cell receptor-mimicking antibodies and antibody conjugates as anti tumoral agents.


Assuntos
Antineoplásicos/farmacologia , Antígenos de Histocompatibilidade/metabolismo , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Humanos , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo
11.
Cancer Genomics Proteomics ; 11(2): 67-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24709544

RESUMO

Proteases are often overexpressed in tumor cells and/or the stromal compartment and can thus be exploited in tumor therapy to activate cytotoxic prodrugs as, for example, in cytolytic fusion proteins, and for tumor imaging. Specifically, we discuss cathepsin B-activated prodrug conjugates, antibody-directed prodrug therapy, protease-activated peptide-thapsigargin conjugates, protease-activated cytotoxic receptor ligands and other cytotoxic proteins, protease-mediated activation of anthrax toxin, granzyme B as a therapeutic principle in cytolytic fusion proteins, and tumor-imaging based on deregulated proteases.


Assuntos
Antineoplásicos/metabolismo , Neoplasias/tratamento farmacológico , Pró-Fármacos/metabolismo , Animais , Antineoplásicos/uso terapêutico , Catepsina B/fisiologia , Granzimas/fisiologia , Humanos , Metaloproteinases da Matriz/fisiologia , Pró-Fármacos/uso terapêutico , Proteólise , Serina Endopeptidases/fisiologia , Ativador de Plasminogênio Tipo Uroquinase/fisiologia
12.
Cancer Genomics Proteomics ; 11(1): 25-38, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24633317

RESUMO

Bacterial- and plant-derived immunotoxins have documented potential for treatment of cancer. We discuss Anthrax toxin, ribosome inactivating-toxins, such as saporin and ricin, and ADP-ribosylating toxins such as Diphtheria toxin and Pseudomonas exotoxin, with focus on the latter, which has been most thoroughly investigated. Regarding their potential as anticancer agents, critical issues such as immunogenicity and toxicity are outlined. We describe different generations of immunotoxins, the pathways for the delivery of the cytotoxic 'warheads', molecular parameters modulating efficacy, and combination therapy with other anticancer agents. Finally, we discuss deimmunization strategies based on the removal of B- and T-cell epitopes from the cytotoxic component, and highlight promising clinical proof-of-concept studies.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Bactérias/uso terapêutico , Imunotoxinas/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas de Plantas/uso terapêutico , Animais , Antineoplásicos/farmacologia , Proteínas de Bactérias/farmacologia , Humanos , Imunotoxinas/farmacologia , Proteínas de Plantas/farmacologia
13.
Cancer Genomics Proteomics ; 10(4): 155-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23893924

RESUMO

In order to overcome limitations of monoclonal antibodies, new protein-based scaffolds have been designed and evaluated pre-clinically, and some of them are in clinical studies for the treatment of cancer. These entities can be placed into two categories: scaffolds which bind ligands via amino acids in exposed loops and those in which ligand binding is mediated by amino acids in secondary structures, such as ß-sheet modules. Accordingly, we discuss adnectins, lipocalins, Kunitz domain-based binders, avimers, knottins, fynomers, atrimers and cytotoxic T-lymphocyte associated protein-4 (CTLA4)-based binders which fall into the first category, while darpins, affibodies, affilins and armadillo repeat protein-based scaffolds are members of the second category. In addition, we also discuss the new molecular entities as imaging tools and outline their unique characteristics in the context of multimeric and multivalent binding.


Assuntos
Aminoácidos/química , Anticorpos Monoclonais/uso terapêutico , Neoplasias/tratamento farmacológico , Proteínas/administração & dosagem , Aminoácidos/uso terapêutico , Anticorpos Monoclonais/química , Antígeno CTLA-4/administração & dosagem , Antígeno CTLA-4/química , Humanos , Ligantes , Neoplasias/genética , Neoplasias/imunologia , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas/química
14.
Cancer Genomics Proteomics ; 10(1): 1-18, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382582

RESUMO

The advent of various technologies for the generation of bi- and multispecific recombinant antibody-based molecules brought with it a multitude of formats for selecting target combinations. Some of the format options are outlined from a technical point of view. We focus on the achievements and prospects of the underlying technologies for generating bi- and multispecific antibodies to i) target immune effector cells and/or cytokines to tumors, ii) engage death receptors on tumor cells simultaneously, iii) improve antiangiogenic intervention by blocking complementary pathways of angiogenesis and iv) achieve more efficient targeting of human epidermal growth factor-related and other receptor tyrosine kinase-related pathways. Many of the outlined approaches, in addition to potential improvement of therapeutic efficacy in comparison to single agent intervention, also offer the potential to counteract therapy resistance.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Anticorpos Biespecíficos/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Antígenos de Neoplasias/imunologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antígenos CD28/imunologia , Humanos , Modelos Moleculares , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neovascularização Patológica/tratamento farmacológico , Estrutura Terciária de Proteína , Linfócitos T/química , Linfócitos T/imunologia
15.
MAbs ; 5(1): 22-33, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23211638

RESUMO

Several novel anti-CD20 monoclonal antibodies are currently in development with the aim of improving the treatment of B cell malignancies. Mutagenesis and epitope mapping studies have revealed differences between the CD20 epitopes recognized by these antibodies. Recently, X-ray crystallography studies confirmed that the Type I CD20 antibody rituximab and the Type II CD20 antibody obinutuzumab (GA101) differ fundamentally in their interaction with CD20 despite recognizing a partially overlapping epitope on CD20. The Type I CD20 antibodies rituximab and ofatumumab are known to bind to different epitopes. The differences suggest that the biological properties of these antibodies are not solely determined by their core epitope sequences, but also depend on other factors, such as the elbow hinge angle, the orientation of the bound antibody and differential effects mediated by the Fc region of the antibody. Taken together, these factors may explain differences in the preclinical properties and clinical efficacy of anti-CD20 antibodies.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos CD20/metabolismo , Epitopos/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Monoclonais Murinos/metabolismo , Anticorpos Monoclonais Murinos/uso terapêutico , Antígenos CD20/química , Antígenos CD20/genética , Antígenos CD20/imunologia , Ensaios Clínicos como Assunto , Cristalografia por Raios X , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Humanos , Leucemia Linfocítica Crônica de Células B/terapia , Linfoma não Hodgkin/terapia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Rituximab
16.
Cancer Genomics Proteomics ; 9(6): 357-72, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23162075

RESUMO

In this review, we summarize approaches to treat cancer with genetically engineered fusion proteins. Such proteins can act as decoy receptors for several ligands or as recruiters of immune effector cells to tumor. Examples of interference with growth factor-mediated tumor growth and tumor-related angiogenesis with fusion proteins consisting of the extracellular domains, and in some cases also of entities of one or several receptors and the Fc part of human IgG1, are discussed. In addition, we present strategies for recruitment of immune effector cells to tumor with fusion proteins. This can be achieved with fusion proteins consisting of a tumor-related antibody and a cytokine or major histocompatibilty complex class-I-peptide complexes, by T-cell receptor cytokine fusion proteins or by combination of a T-cell-recruiting antibody with a tumor-related ligand or a defined T-cell receptor.


Assuntos
Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/uso terapêutico , Anticorpos Antineoplásicos/uso terapêutico , Citocinas/uso terapêutico , Humanos , Receptores de Antígenos de Linfócitos T/uso terapêutico , Receptores de IgG/uso terapêutico
17.
Cancer Genomics Proteomics ; 9(3): 119-33, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22593247

RESUMO

Cytotoxic fusion proteins for tumor therapy are composed of an antibody-based targeting moiety and an effector molecule. Effectors may possess enzymatic activity confering cytoxicity after internalization or be an antibody-targeted death-receptor ligand that induces apoptosis after interaction with a death receptor. In this review, we focus on cytotoxic fusion proteins which, in most cases, are composed of fully human targeting and effector moieties. Regarding the first category, as outlined above, we focus on fusion proteins based on ribonucleases, granzyme B, apoptosis-inducing factor and death-associated protein kinases. The second category of fusion proteins makes use of cell-death inducing ligands such as tumor-necrosis factor, tumor necrosis factor α-related, apoptosis-inducing ligand fas ligand and a tumor-targeting antibody moiety. For the latter category, prodrug-related concepts are also covered. The critical issues to be resolved for improved efficacy and safety are discussed.


Assuntos
Antineoplásicos/farmacologia , Imunotoxinas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Anticorpos/química , Anticorpos/imunologia , Antineoplásicos/química , Antineoplásicos/imunologia , Sistemas de Liberação de Medicamentos , Engenharia Genética , Humanos , Imunotoxinas/química , Imunotoxinas/imunologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia
18.
Biochem J ; 442(3): 483-94, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22132769

RESUMO

Hepsin is a type II transmembrane serine protease that is expressed in several human tissues. Overexpression of hepsin has been found to correlate with tumour progression and metastasis, which is so far best studied for prostate cancer, where more than 90% of such tumours show this characteristic. To enable improved future patient treatment, we have developed a monoclonal humanized antibody that selectively inhibits human hepsin and does not inhibit other related proteases. We found that our antibody, hH35, potently inhibits hepsin enzymatic activity at nanomolar concentrations. Kinetic characterization revealed non-linear, slow, tight-binding inhibition. This correlates with the crystal structure we obtained for the human hepsin-hH35 antibody Fab fragment complex, which showed that the antibody binds hepsin around α3-helix, located far from the active centre. The unique allosteric mode of inhibition of hH35 is distinct from the recently described HGFA (hepatocyte growth factor activator) allosteric antibody inhibition. We further explain how a small change in the antibody design induces dramatic structural rearrangements in the hepsin antigen upon binding, leading to complete enzyme inactivation.


Assuntos
Anticorpos Monoclonais/farmacologia , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Regulação Alostérica , Animais , Anticorpos Monoclonais/química , Cristalografia por Raios X , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Conformação Proteica , Inibidores de Serina Proteinase/química , Transfecção
19.
Proc Natl Acad Sci U S A ; 108(27): 11187-92, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21690412

RESUMO

We describe a generic approach to assemble correctly two heavy and two light chains, derived from two existing antibodies, to form human bivalent bispecific IgG antibodies without use of artificial linkers. Based on the knobs-into-holes technology that enables heterodimerization of the heavy chains, correct association of the light chains and their cognate heavy chains is achieved by exchange of heavy-chain and light-chain domains within the antigen binding fragment (Fab) of one half of the bispecific antibody. This "crossover" retains the antigen-binding affinity but makes the two arms so different that light-chain mispairing can no longer occur. Applying the three possible "CrossMab" formats, we generated bispecific antibodies against angiopoietin-2 (Ang-2) and vascular endothelial growth factor A (VEGF-A) and show that they can be produced by standard techniques, exhibit stabilities comparable to natural antibodies, and bind both targets simultaneously with unaltered affinity. Because of its superior side-product profile, the CrossMab(CH1-CL) was selected for in vivo profiling and showed potent antiangiogenic and antitumoral activity.


Assuntos
Anticorpos Biespecíficos/biossíntese , Anticorpos Biespecíficos/química , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Angiopoietina-2/imunologia , Animais , Anticorpos Biespecíficos/metabolismo , Afinidade de Anticorpos , Especificidade de Anticorpos , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Imunoglobulina G/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Modelos Moleculares , Neovascularização Fisiológica , Engenharia de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia
20.
Proc Natl Acad Sci U S A ; 108(20): 8194-9, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21536919

RESUMO

Bispecific antibodies that bind cell-surface targets as well as digoxigenin (Dig) were generated for targeted payload delivery. Targeting moieties are IgGs that bind the tumor antigens Her2, IGF1R, CD22, or LeY. A Dig-binding single-chain Fv was attached in disulfide-stabilized form to C termini of CH3 domains of targeting antibodies. Bispecific molecules were expressed in mammalian cells and purified in the same manner as unmodified IgGs. They are stable without aggregation propensity and retain binding specificity/affinity to cell-surface antigens and Dig. Digoxigeninylated payloads were generated that retain full functionality and can be complexed to bispecific antibodies in a defined 21 ratio. Payloads include small compounds (Dig-Cy5, Dig-Doxorubicin) and proteins (Dig-GFP). Complexed payloads are targeted by the bispecifics to cancer cells and because these complexes are stable in serum, they can be applied for targeted delivery. Because Dig bispecifics also effectively capture digoxigeninylated compounds under physiological conditions, separate administration of uncharged Dig bispecifics followed by application of Dig payload is sufficient to achieve antibody-mediated targeting in vitro and in vivo.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/administração & dosagem , Digoxigenina/imunologia , Sistemas de Liberação de Medicamentos/métodos , Anticorpos Biespecíficos/imunologia , Antígenos de Neoplasias/imunologia , Carbocianinas/administração & dosagem , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Proteínas de Fluorescência Verde/administração & dosagem , Humanos , Métodos , Anticorpos de Cadeia Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA