Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicology ; 313(2-3): 145-150, 2013 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23219592

RESUMO

Humans are constantly exposed to mixtures, such as tobacco smoke, exhaust from diesel, gasoline or new bio-fuels, containing several 1000 compounds, including many known human carcinogens. Covalent binding of reactive compounds or their metabolites to DNA and formation of stable adducts is believed to be the causal link between exposure and carcinogenesis. DNA and protein adducts are well established biomarkers for the internal dose of reactive compounds or their metabolites and are an integral part of science-based risk assessment. However, technical limitations have prevented comprehensive detection of a broad spectrum of adducts simultaneously. Therefore, most studies have focused on measurement of abundant individual adducts. These studies have produced valuable insight into the metabolism of individual carcinogens, but they are insufficient for risk assessment of exposure to complex mixtures. To overcome this limitation, we present herein proof-of-principle for comprehensive exposure assessment, using N-terminal valine adduct profiles as a biomarker. The reported method is based on our previously established immunoaffinity liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with modification to enrich all N-terminal valine alkylated peptides. The method was evaluated using alkylated peptide standards and globin reacted in vitro with alkylating agents (1,2-epoxy-3-butene, 1,2:3,4-diepoxybutane, propylene oxide, styrene oxide, N-ethyl-N-nitrosourea and methyl methanesulfonate), known to form N-terminal valine adducts. To demonstrate proof-of-principle, the method was successfully applied to globin from mice treated with four model compounds. The results suggest that this novel approach might be suitable for in vivo biomonitoring.


Assuntos
Carcinógenos Ambientais/análise , Misturas Complexas/sangue , Exposição Ambiental/análise , Animais , Biomarcadores/análise , Biomarcadores/sangue , Cromatografia Líquida , Misturas Complexas/química , Feminino , Hemoglobinas/análise , Hemoglobinas/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Valina/análise , Valina/química
2.
Toxicol Sci ; 125(1): 30-40, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22003190

RESUMO

1,3-Butadiene (BD) is an important industrial chemical that is classified as a human carcinogen. BD carcinogenicity has been attributed to its metabolism to several reactive epoxide metabolites and formation of the highly mutagenic 1,2:3,4-diepoxybutane (DEB) has been hypothesized to drive mutagenesis and carcinogenesis at exposures experienced in humans. We report herein the formation of DEB-specific N,N-(2,3-dihydroxy-1,4-butadiyl)valine (pyr-Val) in BD-exposed workers as a biomarker of DEB formation. pyr-Val was determined in BD monomer and polymer plant workers that had been previously analyzed for several other biomarkers of exposure and effect. pyr-Val was detected in 68 of 81 (84%) samples ranging from 0.08 to 0.86 pmol/g globin. Surprisingly, pyr-Val was observed in 19 of 23 administrative control subjects not known to be exposed to BD, suggesting exposure from environmental sources of BD. The mean ± SD amounts of pyr-Val were 0.11 ± 0.07, 0.16 ± 0.12, and 0.29 ± 0.20 pmol/g globin in the controls, monomer, and polymer workers, respectively, clearly demonstrating formation of DEB in humans. The amounts of pyr-Val found in this study suggest that humans are much less efficient in the formation of DEB than mice or rats at similar exposures. Formation of pyr-Val was more than 50-fold lower than has been associated with increased mutagenesis in rodents. The results further suggest that formation of DEB relative to other epoxides is significantly different in the highest exposed polymer workers compared with controls and BD monomer workers. Whether this is due to saturation of metabolic formation or increased GST-mediated detoxification could not be determined.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Butadienos/toxicidade , Compostos de Epóxi/química , Hemoglobinas/metabolismo , Exposição Ocupacional/efeitos adversos , Pirrolidinas/metabolismo , Valina/análogos & derivados , Poluentes Ocupacionais do Ar/química , Poluentes Ocupacionais do Ar/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Biomarcadores/urina , Butadienos/química , Butadienos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Compostos de Epóxi/toxicidade , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Hemoglobinas/análise , Hemoglobinas/química , Humanos , Hipoxantina Fosforribosiltransferase/genética , Masculino , Mutação , Exposição Ocupacional/análise , Pirrolidinas/química , Pirrolidinas/urina , Espectrometria de Massas em Tandem/métodos , Valina/química , Valina/metabolismo , Valina/urina
3.
Chem Res Toxicol ; 24(7): 1048-61, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21548641

RESUMO

Isoprene, the 2-methyl analogue of 1,3-butadiene, is ubiquitous in the environment, with major contributions to total isoprene emissions stemming from natural processes despite the compound being a bulk industrial chemical. Additionally, isoprene is a combustion product and a major component in cigarette smoke. Isoprene has been classified as possibly carcinogenic to humans (group 2B) by IARC and as reasonably anticipated to be a human carcinogen by the National Toxicology Program. Isoprene, like butadiene, requires metabolic activation to reactive epoxides to exhibit its carcinogenic properties. The mode of action has been postulated to be that of a genotoxic carcinogen, with the formation of promutagenic DNA adducts being essential for mutagenesis and carcinogenesis. In rodents, isoprene-induced tumors show unique point mutations (A→T transversions) in the K-ras protooncogene at codon 61. Therefore, we investigated adducts formed after the reaction of 2'-deoxyadenosine (dAdo ) with the two monoepoxides of isoprene, 2-ethenyl-2-methyloxirane (IP-1,2-O) and propen-2-yloxirane (IP-3,4-O), under physiological conditions. The formation of N1-2'-deoxyinosine (N1-dIno) due to the deamination of N1-dAdo adducts was of particular interest, since N1-dIno adducts are suspected to have high mutagenic potential based on in vitro experiments. Major stable adducts were identified by HPLC, UV-spectroscopy, and LC-MS/MS and characterized by (1)H NMR and (1)H,(13)C HSQC and HMBC NMR experiments. Adducts of IP-1,2-O that were fully identified are R,S-C1-N(6)-dAdo, R-C2-N(6)-dAdo, and S-C2-N(6)-dAdo; adducts of IP-3,4-O are S-C3-N(6)-dAdo, R-C3-N(6)-dAdo, R,S-C4-N(6)-dAdo, S-C4-N1-dIno, R-C4-N1-dIno, R-C3-N1-dIno, S-C3-N1-dIno, and C3-N7-Ade. Both monoepoxides formed adducts on the terminal and internal oxirane carbons. This is the first study to describe adducts of isoprene monoepoxides with dAdo. Characterization of adducts formed by isoprene monoepoxides with deoxynucleosides and subsequently with DNA represent the first step toward evaluating their potential for being converted into a mutation or as biomarkers of isoprene metabolism and exposure.


Assuntos
Butadienos/química , Cromatografia Líquida de Alta Pressão/métodos , Adutos de DNA/análise , Desoxiadenosinas/química , Compostos de Epóxi/química , Hemiterpenos/química , Pentanos/química , Espectrometria de Massas em Tandem/métodos , Espectroscopia de Ressonância Magnética
4.
Chem Biol Interact ; 192(1-2): 150-4, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20974116

RESUMO

1,3-Butadiene (BD) is a known rodent and human carcinogen that is metabolized mainly by P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB) and 1,2-epoxy-3,4-butanediol (EB-diol). The individual epoxides vary up to 200-fold in their mutagenic potency, with DEB being the most mutagenic metabolite. It is important to understand the internal formation of the individual epoxides to assign the relative risk for each metabolite and to understand the molecular mechanisms responsible for major species differences in carcinogenicity. We have conducted extensive exposure-biomarker studies on mice, rats and humans. Using low exposures that range from current occupational levels to human exposures from tobacco smoke has provided evidence that mice are very different from humans, with mice forming ∼200 times more DEB than humans at exposures of 0.1-1.5ppm BD. While no gender differences have been noted in mice and rats for globin adducts or N-7 guanine adducts, female rats and mice had 2-3-fold higher Hprt mutations and DNA-DNA cross-links, suggesting a gender difference in DNA repair. Numerous molecular epidemiology studies have evaluated globin adducts and Hprt mutations, SCEs and chromosomal abnormalities. None of the blinded studies have shown evidence of human genotoxicity at current occupational exposures and studies of globin adducts have shown similar or lower formation of adducts in females than males. If one calculates the EB dose-equivalents for the three species, mice clearly differ from rats and humans, being ∼44 and 174 times greater than rats and humans, respectively. These data provide a scientific basis for improved risk assessment of BD.


Assuntos
Biomarcadores/metabolismo , Butadienos/toxicidade , Animais , Adutos de DNA , Feminino , Humanos , Hipoxantina Fosforribosiltransferase/genética , Masculino , Camundongos , Mutação , Ratos , Medição de Risco
5.
Toxicol Sci ; 115(2): 322-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20176624

RESUMO

1,3-Butadiene (BD) is a known rodent and human carcinogen that is metabolized mainly by P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB), and 1,2-epoxy-3,4-butanediol. The individual epoxides vary up to 200-fold in their mutagenic potency, with DEB being the most mutagenic metabolite. It is important to understand the internal formation of the individual epoxides to assign the relative risk for each metabolite and to understand the molecular mechanisms responsible for extensive species differences in carcinogenicity. This study presents a comprehensive exposure-response for the formation of the DEB-specific N,N-(2,3-dihydroxy-1,4-butadiyl)valine (pyr-Val) in mice and rats. Using nano-ultra high pressure liquid chromatography-tandem-mass spectrometry allowed analysis of pyr-Val in mice and rats exposed to BD as low as 0.1 and 0.5 ppm BD, respectively, and demonstrated significant differences in the amounts and exposure-response of pyr-Val formation. Mice formed 10- to 60-fold more pyr-Val compared to rats at similar exposures. The formation of pyr-Val increased with exposures, and the formation was most efficient with regard to formation per parts per million BD at low exposures. While formation at higher exposures appeared linear in mice, in rats formation saturated at exposures > or = 200 ppm for 10 days. In rats, amounts of pyr-Val were lower after 20 days than after 10 days of exposure, suggesting that the lifespan of rat erythrocytes may be shortened following exposure to BD. This research supports the hypothesis that the lower susceptibility of rats to BD-induced carcinogenesis results from greatly reduced formation of DEB following exposure to BD.


Assuntos
Butadienos/toxicidade , Carcinógenos/toxicidade , Adutos de DNA/metabolismo , Compostos de Epóxi/metabolismo , Pirrolidinas/metabolismo , Valina/análogos & derivados , Valina/metabolismo , Animais , Butadienos/metabolismo , Carcinógenos/química , Carcinógenos/metabolismo , Cromatografia Líquida de Alta Pressão , Adutos de DNA/análise , Compostos de Epóxi/análise , Feminino , Exposição por Inalação , Masculino , Camundongos , Camundongos Endogâmicos , Pirrolidinas/análise , Ratos , Ratos Endogâmicos F344 , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Valina/análise , Valina/química
6.
Proteomics ; 9(15): 3939-44, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19637239

RESUMO

MS-based proteomics has become an indispensable tool in system biology generating a need for accurate and precise quantitation of peptide standards. The presented method utilizes ultra performance LC-MS/MS (UPLC-MS/MS) to accurately quantify peptide standards at concentrations of 0.1-10 microM. The ability for accurate quantitation of micro-molar concentrations has the advantages that quantitation can be performed routinely with high precision and the high sensitivity of the method minimizes the amounts required.


Assuntos
Peptídeos/análise , Proteômica/métodos , Cromatografia Líquida/economia , Cromatografia Líquida/métodos , Proteômica/economia , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/economia , Espectrometria de Massas em Tandem/métodos
7.
Chem Biol Interact ; 166(1-3): 78-83, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17343837

RESUMO

The 2005 International Symposium on the evaluation of butadiene and chloroprene health risks provided the opportunity to consider the past, present and future state of research issues for 1,3-butadiene. Considerable advancements have been made in our knowledge of exposure, metabolism, biomarkers of exposure and effect, and epidemiology. Despite this, uncertainties remain which will impact the human health risk assessment for current worker and environmental exposures. This paper reviews key aspects of recent studies and the role that biomarkers of internal dosimetry can play in addressing low to high exposure, gender, and cross-species differences in butadiene toxicity and metabolism. Considerable information is now available on the detection and quantification of protein adducts formed from the mono-, di- and dihydroxy-epoxide metabolites of butadiene. The diepoxide metabolite appears to play a key role in mutagenesis. Species differences in production of this critical metabolite are reflected by the diepoxybutane-specific hemoglobin adduct, pry-Val. To date, the pry-Val adduct has not been quantifiable in human blood samples from workers with cumulative occupational exposures up to 6.3 ppm-weeks; whereas, the pry-Val was quantifiable in the blood of mice and rats with similar cumulative exposures. Levels in mice were much higher than in rats. Further improvements in analytical sensitivity for the pyr-Val adduct are on the horizon. Epidemiology studies are also described and ongoing efforts promise to help bridge our understanding of past and future risks.


Assuntos
Butadienos/administração & dosagem , Butadienos/efeitos adversos , Relação Dose-Resposta a Droga , Animais , Estudos Epidemiológicos , Humanos , Exposição por Inalação , Medição de Risco/tendências , Especificidade da Espécie
8.
Chem Biol Interact ; 166(1-3): 121-31, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-16945358

RESUMO

Experiments were performed: (i) to investigate potential age- and gender-dependent differences in mutagenic responses in T cells following exposures of B6C3F1 mice and F344 rats by inhalation for 2 weeks to 0 or 1250 ppm butadiene (BD), and (ii) to determine if exposures for 2 weeks to 62.5 ppm BD produce a mutagenic effect in female rats. To evaluate the effect of age on mutagenic response, mutant manifestation curves for splenic T cells of female mice exposed at 8-9 weeks of age were defined by measuring Hprt mutant frequencies (MFs) at multiple time points after BD exposure using a T cell cloning assay and comparing the resulting mutagenic potency estimate (calculated as the difference of areas under the mutant manifestation curves of treated versus control animals) to that reported for female mice exposed to BD in the same fashion beginning at 4-5 weeks of age. The shapes of the mutant T cell manifestation curves for spleens were different [e.g., the maximum BD-induced MFs in older mice (8.0+/-1.0 [S.D.]x10(-6)) and younger mice (17.8+/-6.1 x 10(-6)) were observed at 8 and 5 weeks post-exposure, respectively], but the mutagenic burden was the same for both age groups. To assess the effect of gender on mutagenic response, female and male rodents were exposed to BD at 4-5 weeks of age and Hprt MFs were measured when maximum MFs are expected to occur post-exposure. The resulting data demonstrated that the pattern for mutagenic susceptibility from high-level BD exposure is female mice>male mice>female rats>male rats. Exposures of female rats to 62.5 ppm BD caused a minor but significant mutagenic response compared with controls (n=16/group; P=0.03). These results help explain part of the differing outcomes/interpretations of data in earlier Hprt mutation studies in BD-exposed rodents.


Assuntos
Envelhecimento/genética , Butadienos/administração & dosagem , Butadienos/toxicidade , Exposição por Inalação , Mutagênese/efeitos dos fármacos , Caracteres Sexuais , Linfócitos T/efeitos dos fármacos , Animais , Células Clonais , Intervalos de Confiança , Feminino , Hipoxantina Fosforribosiltransferase/genética , Masculino , Camundongos , Testes de Mutagenicidade , Mutagênicos/administração & dosagem , Mutagênicos/toxicidade , Proteínas Mutantes/genética , Mutação/genética , Ratos , Ratos Endogâmicos F344 , Especificidade da Espécie , Baço/citologia , Baço/efeitos dos fármacos , Baço/enzimologia , Linfócitos T/enzimologia , Linfócitos T/metabolismo
9.
Chem Biol Interact ; 166(1-3): 63-77, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-16949064

RESUMO

Results of a recent molecular epidemiological study of 1,3-butadiene (BD) exposed Czech workers, conducted to compare female to male responses, have confirmed and extended the findings of a previously reported males only study (HEI Research Report 116, 2003). The initial study found that urine concentrations of the metabolites 1,2-dihydroxy-4-(acetyl) butane (M1) and 1-dihydroxy-2-(N-acetylcysteinyl)-3-butene (M2) and blood concentrations of the hemoglobin adducts N-[2-hydroxy-3-butenyl] valine (HB-Val) and N-[2,3,4-trihydroxy-butyl] valine (THB-Val) constitute excellent biomarkers of exposure, both being highly correlated with BD exposure levels, and that GST genotypes modulate at least one metabolic pathway, but that irreversible genotoxic effects such as chromosome aberrations and HPRT gene mutations are neither associated with BD exposure levels nor with worker genotypes (GST [glutathione-S-transferase]-M1, GSTT1, CYP2E1 (5' promoter), CYP2E1 (intron 6), EH [epoxide hydrolase] 113, EH139, ADH [alcohol dehydrogenase]2 and ADH3). The no observed adverse effect level (NOAEL) for chromosome aberrations and HPRT mutations was 1.794 mg/m(3) (0.812 ppm)--the mean exposure level for the highest exposed worker group in this initial study. The second Czech study, reported here, initiated in 2003, included 26 female control workers, 23 female BD exposed workers, 25 male control workers and 30 male BD exposed workers (some repeats from the first study). Multiple external exposure measurements (10 full 8-h shift measures by personal monitoring per worker) over a 4-month period before biological sample collections showed that BD workplace levels were lower than in the first study. Mean 8-h TWA exposure levels were 0.008 mg/m(3) (0.0035 ppm) and 0.397 mg/m(3) (0.180 ppm) for female controls and exposed, respectively, but with individual single 8-h TWA values up to 9.793 mg/m(3) (4.45 ppm) in the exposed group. Mean male 8-h TWA exposure levels were 0.007 mg/m(3) (0.0032 ppm) and 0.808 mg/m(3) (0.370 ppm) for controls and exposed, respectively; however, the individual single 8-h TWA values up to 12.583 mg/m(3) (5.72 ppm) in the exposed group. While the urine metabolite concentrations for both M1 and M2 were elevated in exposed compared to control females, the differences were not significant, possibly due to the relatively low BD exposure levels. For males, with greater BD exposures, the concentrations of both metabolites were significantly elevated in urine from exposed compared to control workers. As in the first study, urine metabolite excretion patterns in both sexes revealed conjugation to be the minor detoxification pathway (yielding the M2 metabolite) but both M1 and M2 concentration values were lower in males in this second study compared to their concentrations in the first, reflecting the lower external exposures of males in this second study compared to the first. Of note, females showed lower concentrations of both M1 and M2 metabolites in the urine per unit of BD exposure than did males while exhibiting the same M1/(M1+M2) ratio, reflecting the same relative utilization of the hydrolytic (producing M1) and the conjugation (producing M2) detoxification pathways as males. Assays for the N,N-(2,3-dihydroxy-1,4-butadyl) valine (pyr-Val) hemoglobin (Hb) adduct, which is specific for the highly genotoxic 1,2,3,4-diepoxybutane (DEB) metabolite of BD, have been conducted on blood samples from all participants in this second Czech study. Any adduct that may have been present was below the limits of quantitation (LOQ) for this assay for all samples, indicating that production of this important BD metabolite in humans is below levels produced in both mice and rats exposed to as little as 1.0 ppm BD by inhalation (J.A. Swenberg, M.G. Bird, R.J. Lewis, Future directions in butadiene risk assessment, Chem. Biol. Int. (2006), this issue). Results of assays for the HB-Val and THB-Val hemoglobin adducts are pending. HPRT mutations, determined by cloning assays, and multiple measures of chromosome level changes (sister-chromatid exchanges [SCE], aberrations determined by conventional methods and FISH) again showed no associations with BD exposures, confirming the findings of the initial study that these irreversible genotoxic changes do not arise in humans occupationally exposed to low levels of BD. Except for lower production of both urine metabolites in females, no female-male differences in response to BD exposures were detected in this study. As in the initial study, there were no significant genotype associations with the irreversible genotoxic endpoints. However, as in the first, differences in the metabolic detoxification of BD as reflected in relative amounts of the M1 and M2 urinary metabolites were associated with genotypes, this time both GST and EH.


Assuntos
Butadienos/administração & dosagem , Butadienos/efeitos adversos , Indústria Química , Exposição Ocupacional/estatística & dados numéricos , Caracteres Sexuais , Acetilcisteína/análogos & derivados , Acetilcisteína/urina , Adulto , Benzeno/análise , Aberrações Cromossômicas/efeitos dos fármacos , República Tcheca/epidemiologia , Feminino , Genótipo , Hemoglobinas/metabolismo , Humanos , Hipoxantina Fosforribosiltransferase/genética , Masculino , Epidemiologia Molecular , Mutação/genética , Exposição Ocupacional/efeitos adversos , Troca de Cromátide Irmã/efeitos dos fármacos , Troca de Cromátide Irmã/genética , Estireno/análise , Tolueno/análise , Recursos Humanos
10.
Chem Biol Interact ; 166(1-3): 219-25, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-16860298

RESUMO

Butadiene (BD) metabolism shows gender, species and concentration dependency, making the extrapolation of animal results to humans complex. BD is metabolized mainly by cytochrome P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2;3,4-diepoxybutane (DEB) and 1,2-epoxy-butanediol (EB-diol). For accurate risk assessment it is important to elucidate species differences in the internal formation of the individual epoxides in order to assign the relative risks associated with their different mutagenic potencies. Analysis of N-terminal globin adducts is a common approach for monitoring the internal formation of BD derived epoxides. Our long term strategy is to develop an LC-MS/MS method for simultaneous detection of all three BD hemoglobin adducts. This approach is modeled after the recently reported immunoaffinity LC-MS/MS method for the cyclic N,N-(2,3-dihydroxy-1,4-butadyil)-valine (pyr-Val, derived from DEB). We report herein the analysis of the EB-derived 2-hydroxyl-3-butenyl-valine peptide (HB-Val). The procedure utilizes trypsin hydrolysis of globin and immunoaffinity (IA) purification of alkylated heptapeptides. Quantitation is based on LC-MS/MS monitoring of the transition from the singly charged molecular ion of HB-Val (1-7) to the a(1) fragment. Human HB-Val (1-11) was synthesized and used for antibody production. As internal standard, the labeled rat-[(13)C(5)(15)N]-Val (1-11) was prepared through direct alkylation of the corresponding peptide with EB. Standards were characterized and quantified by LC-MS/MS and LC-UV. The method was validated with different amounts of human HB-Val standard. The recovery was >75% and coefficient of variation <25%. The LOQ was set to 100 fmol/injection. For a proof of principal experiment, globin samples from male and female rats exposed to 1000 ppm BD for 90 days were analyzed. The amounts of HB-Val present were 268.2+/-56 and 350+/-70 pmol/g (mean+/-S.D.) for males and females, respectively. No HB-Val was detected in controls. These data are much lower compared to previously reported values measured by GC-MS/MS. The difference may be due higher specificity of the LC-MS/MS method to the N-terminal peptide from the alpha-chain versus derivatization of both alpha- and beta-chain by Edman degradation, and possible instability of HB-Val adducts during long term storage (about 10 years) between the analyses. These differences will be resolved by examining recently collected samples, using the same internal standard for parallel analysis by GC-MS/MS and LC-MS/MS. Based on our experience with pyr-Val adduct assay we anticipate that this assay will be suitable for evaluation of HB-Val in multiple species.


Assuntos
Compostos de Epóxi/análise , Hemoglobinas/análise , Peptídeos/análise , Valina/análise , Animais , Butadienos/metabolismo , Calibragem , Feminino , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Padrões de Referência , Caracteres Sexuais
11.
Chem Biol Interact ; 166(1-3): 84-92, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17084829

RESUMO

The aim of this review is to summarize our recent data on butadiene (BD) derived hemoglobin adducts as biomarkers for the internal formation of the individual epoxides formed by butadiene (BD). It is well known that BD is oxidized by cytochrome P450s to several epoxides that form DNA and protein adducts. 1,2-Epoxy-3-butene (EB), 1,2;3,4-diepoxybutane (DEB) and 1,2-epoxy-3,4-butanediol (EB-diol) form N-(2-hydroxy-3-butenyl)-valine (HB-Val), N,N-(2,3-dihydroxy-1,4-butadiyl)-valine (pyr-Val) and N-(2,3,4-trihydroxybutyl)-valine (THB-Val) adducts, respectively. The analysis of HB-Val and THB-Val by the modified Edman degradation and GC-MS/MS has generated valuable insights into BD metabolism across species. In addition, a recently established method for the analysis of pyr-Val has been proven to be suitable for detection of pyr-Val in rodents exposed to BD as low as 1 ppm. These technologies have been applied to study a wide range of exposures to BD, EB, DEB, and 3-butene-1,2-diol as a precursor of EB-diol in male and female mice and rats. Altogether the data have shown that BD metabolism is species and concentration dependent, consistent with metabolism and carcinogenesis data. Mice form much more HB-Val and pyr-Val than rats, especially at low exposures. After 10 days of inhalation exposure to 3 ppm BD, mice formed 12.5-fold more pyr-Val than rats. In contrast, the amounts of THB-Val were similar in mice and rats exposed to 3 or 62.5 ppm BD. Furthermore, it appears that the formation of THB-Val is supralinear in mice and rats due to saturation of metabolic activation pathways. Gender differences in metabolism are less well established. One study with male and female rats exposed to 1000 ppm BD for 90 days demonstrated a 1.6-, 3.5- and 2.0-fold gender difference in formation of HB-Val, pyr-Val and THB-Val, respectively, with females being more efficient in epoxide formation. The analyses of BD derived protein adducts correlate well with the observed species and gender differences in BD-carcinogenesis and suggest that DEB may indeed be the most important metabolite.


Assuntos
Butadienos/química , Compostos de Epóxi/análise , Compostos de Epóxi/química , Hemoglobinas/análise , Hemoglobinas/química , Animais , Biomarcadores/análise , Biomarcadores/química , Butadienos/toxicidade , Compostos de Epóxi/toxicidade , Humanos , Valina/química , Valina/metabolismo
12.
Cancer Res ; 64(23): 8517-20, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15574756

RESUMO

1,3-Butadiene is an important industrial chemical used in the production of synthetic rubber and is also found in gasoline and combustion products. It is a multispecies, multisite carcinogen in rodents, with mice being the most sensitive species. 1,3-Butadiene is metabolized to several epoxides that form DNA and protein adducts. Previous analysis of 1,2,3-trihydroxybutyl-valine globin adducts suggested that most adducts resulted from 3-butene-1,2-diol metabolism to 3,4-epoxy-1,2-butanediol, rather than from 1,2;3,4-diepoxybutane. To specifically examine metabolism of 1,3-butadiene to 1,2;3,4-diepoxybutane, the formation of the 1,2;3,4-diepoxybutane-specific adduct N,N-(2,3-dihydroxy-1,4-butadiyl)-valine was evaluated in mice treated with 3, 62.5, or 1250 ppm 1,3-butadiene for 10 days and rats exposed to 3 or 62.5 ppm 1,3-butadiene for 10 days, or to 1000 ppm 1,3-butadiene for 90 days, using a newly developed immunoaffinity liquid chromatography tandem mass spectrometry assay. In addition, 2-hydroxy-3-butenyl-valine and 1,2,3-trihydroxybutyl-valine adducts were determined. The analyses of several adducts derived from 1,3-butadiene metabolites provided new insight into species and exposure differences in 1,3-butadiene metabolism. Mice formed much higher amounts of N,N-(2,3-dihydroxy-1,4-butadiyl)-valine than rats. The formation of 2-hydroxy-3-butenyl-valine and N,N-(2,3-dihydroxy-1,4-butadiyl)-valine was similar in mice exposed to 3 or 62.5 ppm 1,3-butadiene, whereas 2-hydroxy-3-butenyl-valine was 3-fold higher at 1250 ppm. In both species, 1,2,3-trihydroxybutyl-valine adducts were much higher than 2-hydroxy-3-butenyl-valine and N,N-(2,3-dihydroxy-1,4-butadiyl)-valine. Together, these data show that 1,3-butadiene is primarily metabolized via the 3-butene-1,2-diol pathway, but that mice are much more efficient at forming 1,2;3,4-diepoxybutane than rats, particularly at low exposures. This assay should also be readily adaptable to molecular epidemiology studies on 1,3-butadiene-exposed workers.


Assuntos
Butadienos/metabolismo , Carcinógenos/metabolismo , Compostos de Epóxi/metabolismo , Globinas/metabolismo , Valina/análogos & derivados , Sequência de Aminoácidos , Animais , Butadienos/toxicidade , Carcinógenos/toxicidade , Cromatografia Líquida , Feminino , Globinas/análise , Humanos , Exposição por Inalação , Espectrometria de Massas , Camundongos , Pirrolidinas/análise , Pirrolidinas/metabolismo , Coelhos , Ratos , Ratos Endogâmicos F344 , Valina/análise , Valina/metabolismo
13.
Chem Res Toxicol ; 17(7): 929-36, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15257618

RESUMO

Isoprene (IP, 2-methylbuta-1,3-diene) is ubiquitous in the environment through emission by plants, combustion processes, and endogenous formation and exhalation by mammals, including humans. IP is also an industrial chemical, widely used in the manufacture of synthetic rubber and plastics. Like butadiene, IP is metabolized to reactive epoxides, which form adducts with macromolecules, and is a demonstrated carcinogen in mice. To date, DNA adducts of IP monoepoxides have not been reported. We report here on the formation of N7-guanine (N7-Gua) adducts of isoprene-1,2-oxide (IP-1,2-O, 2-ethenyl-2-methyloxirane) and isoprene-3,4-oxide (IP-3,4-O, propen-2-yloxirane). DNA adducts are useful as biomarkers to estimate exposure, as well as to investigate mechanisms of IP carcinogenesis. Incubation of 2'-deoxyguanosine with the monoepoxides followed by deglycosylation gave four N7-Gua adducts that were isolated by HPLC and characterized by high-resolution FAB(+)-MS, ESI(+)-MS, ESI(+)-MS/MS, and (1)H NMR and two-dimensional heteronuclear (1)H, (13)C correlation NMR spectrometry. IP-1,2-O and IP-3,4-O reacted at both terminal and internal oxirane carbons to form the following regioisomeric adducts at Gua N7: N7-(2'-hydroxy-2'-methyl-3'-buten-1'-yl)guanine, N7-(1'-hydroxy-2'-methyl-3'-buten-2'-yl)guanine, N7-(1'-hydroxy-3'-methyl-3'-buten-2'-yl)guanine, and N7-(2'-hydroxy-3'-methyl-3'-buten-1'-yl)guanine. The same adducts were identified by UV spectra, HPLC retention times, and LC/ESI(+)-MS in the neutral thermal hydrolysates of single- and double-stranded calf thymus DNA after incubation with IP monoepoxides. Characterization of the N7-Gua adducts identified in incubations of DNA with IP monoepoxides represents the first step toward establishing biomarkers of IP metabolism and exposure.


Assuntos
Butadienos/química , Adutos de DNA , Compostos de Epóxi/química , Guanina/análogos & derivados , Hemiterpenos/química , Pentanos/química , Adutos de DNA/síntese química , Adutos de DNA/química , Adutos de DNA/isolamento & purificação , Poluentes Ambientais , Compostos de Epóxi/análise
14.
Chem Res Toxicol ; 16(5): 637-43, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12755593

RESUMO

1,3-Butadiene, a potential human carcinogen widely used in industry, is oxidized by cytochrome P450 to diepoxybutane (DEB), which is the most mutagenic of the known butadiene metabolites. Assessment of the toxicological significance of DEB formation in humans and animals requires identification of a biomarker uniquely associated with DEB for use in molecular dosimetry studies. We wished to develop a specific and sensitive assay for one such suitable marker, the cyclic adduct 2-(3,4-dihydroxypyrrolidin-1-yl)-3-methylbutyramide (pyr-V), which is formed from addition of DEB to the terminal Val of the alpha- and beta-chains of hemoglobin. We needed to prepare a pure, rigorously characterized DEB-modified N-terminal oligopeptide for raising antibodies both to use in an immunoaffinity purification step and to standardize the assay. In addition, we needed a pure isotopomer to serve as an internal standard for quantitation by LC-MS. Direct modification of the globin sequences by reaction with DEB in vitro proved to be unproductive. We therefore opted to synthesize the cyclic Val adduct and incorporate it by FMOC chemistry into the appropriate oligopeptide sequences. In vitro and in vivo, butadiene is oxidized to enantiomeric and meso forms of DEB. A priori, all three DEB isomers are expected to form pyr-V adducts, resulting in three diastereomeric N-terminal peptides. We therefore synthesized a mixture of the cyclic Val diastereomers as their methyl esters by reaction of DEB with l-Val methyl ester hydrochloride. After protection as the di-O-tert-butyl derivatives, the mixture of 2-(3,4-di-t-butoxypyrrolidin-1-yl)-3-methylbutyric acid diastereomers was incorporated as the N-terminal residue into the 1-11 human globin alpha-chain sequence VLSPADKTNVK. The presence of the three diastereomers was confirmed by two-dimensional correlation NMR spectroscopy and temperature-dependent (1)H NMR. This strategy enabled us to obtain pure, rigorously characterized haptens in quantity for the preparation of polyclonal antibodies. Use of FMOC-protected (2)H(3)-Leu in the automated oligopeptide synthesis provided the required isotopomers for use as internal standard.


Assuntos
Amidas/química , Compostos de Epóxi/química , Oligopeptídeos/química , Pirrolidinas/química , Valina/química , Amidas/síntese química , Biomarcadores/química , Butadienos/toxicidade , Carcinógenos/toxicidade , Poluentes Ambientais/toxicidade , Globinas/química , Humanos , Espectroscopia de Ressonância Magnética , Oligopeptídeos/síntese química , Pirrolidinas/síntese química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA