Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cells ; 12(21)2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37947646

RESUMO

Hepatitis C virus (HCV) alters gene expression epigenetically to rearrange the cellular microenvironment in a beneficial way for its life cycle. The host epigenetic changes induced by HCV lead to metabolic dysfunction and malignant transformation. Lysine-specific demethylase 1 (LSD1) is an epigenetic controller of critical cellular functions that are essential for HCV propagation. We investigated the putative role of LSD1 in the establishment of HCV infection using genetic engineering and pharmacological inhibition to alter endogenous LSD1 levels. We demonstrated for the first time that HCV replication was inhibited in LSD1-overexpressing cells, while specific HCV proteins differentially fine-tuned endogenous LSD1 expression levels. Electroporation of the full-length HCV genome and subgenomic replicons in LSD1 overexpression enhanced translation and partially restored HCV replication, suggesting that HCV might be inhibited by LSD1 during the early steps of infection. Conversely, the inhibition of LSD1, followed by HCV infection in vitro, increased viral replication. LSD1 was shown to participate in an intriguing antiviral mechanism, where it activates endolysosomal interferon-induced transmembrane protein 3 (IFITM3) via demethylation, leading endocytosed HCV virions to degradation. Our study proposes that HCV-mediated LSD1 oscillations over countless viral life cycles throughout chronic HCV infection may promote epigenetic changes related to HCV-induced hepatocarcinogenesis.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/fisiologia , Lisina/metabolismo , Hepatite C/genética , Histona Desmetilases/metabolismo , Epigênese Genética , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Biomolecules ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-36008946

RESUMO

The emerging SARS-CoV and SARS-CoV-2 belong to the family of "common cold" RNA coronaviruses, and they are responsible for the 2003 epidemic and the current pandemic with over 6.3 M deaths worldwide. The ORF3a gene is conserved in both viruses and codes for the accessory protein ORF3a, with unclear functions, possibly related to viral virulence and pathogenesis. The tyrosine-based YXXΦ motif (Φ: bulky hydrophobic residue-L/I/M/V/F) was originally discovered to mediate clathrin-dependent endocytosis of membrane-spanning proteins. Many viruses employ the YXXΦ motif to achieve efficient receptor-guided internalisation in host cells, maintain the structural integrity of their capsids and enhance viral replication. Importantly, this motif has been recently identified on the ORF3a proteins of SARS-CoV and SARS-CoV-2. Given that the ORF3a aa sequence is not fully conserved between the two SARS viruses, we aimed to map in silico structural differences and putative sequence-driven alterations of regulatory elements within and adjacently to the YXXΦ motifs that could predict variations in ORF3a functions. Using robust bioinformatics tools, we investigated the presence of relevant post-translational modifications and the YXXΦ motif involvement in protein-protein interactions. Our study suggests that the predicted YXXΦ-related features may confer specific-yet to be discovered-functions to ORF3a proteins, significant to the new virus and related to enhanced propagation, host immune regulation and virulence.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Interações entre Hospedeiro e Microrganismos , Humanos , Peptídeos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2
3.
Cells ; 10(9)2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34571900

RESUMO

Iron is crucial to the regulation of the host innate immune system and the outcome of many infections. Hepatitis C virus (HCV), one of the major viral human pathogens that depends on iron to complete its life cycle, is highly skilled in evading the immune system. This study presents the construction and validation of a physiologically relevant triple-cell co-culture model that was used to investigate the input of iron in HCV infection and the interplay between HCV, iron, and determinants of host innate immunity. We recorded the expression patterns of key proteins of iron homeostasis involved in iron import, export and storage and examined their relation to the iron regulatory hormone hepcidin in hepatocytes, enterocytes and macrophages in the presence and absence of HCV. We then assessed the transcriptional profiles of pro-inflammatory cytokines Interleukin-6 (IL-6) and interleukin-15 (IL-15) and anti-inflammatory interleukin-10 (IL-10) under normal or iron-depleted conditions and determined how these were affected by infection. Our data suggest the presence of a link between iron homeostasis and innate immunity unfolding among liver, intestine, and macrophages, which could participate in the deregulation of innate immune responses observed in early HCV infection. Coupled with iron-assisted enhanced viral propagation, such a mechanism may be important for the establishment of viral persistence and the ensuing chronic liver disease.


Assuntos
Enterócitos/patologia , Hepatite C/patologia , Hepatócitos/patologia , Homeostase , Imunidade Inata , Ferro/metabolismo , Macrófagos/patologia , Técnicas de Cocultura , Citocinas/metabolismo , Enterócitos/imunologia , Enterócitos/metabolismo , Enterócitos/virologia , Hepacivirus/imunologia , Hepacivirus/metabolismo , Hepatite C/imunologia , Hepatite C/metabolismo , Hepatite C/virologia , Hepatócitos/imunologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia
4.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360721

RESUMO

Host lipid metabolism reprogramming is essential for hepatitis C virus (HCV) infection and progression to severe liver disease. Direct-acting antivirals (DAAs) achieve a sustained virological response (SVR) in most patients, but virus eradication does not always protect against hepatocellular carcinoma (HCC). Angiopoietin-like protein-3 (ANGPTL-3) and angiopoietin-like protein-4 (ANGPTL-4) regulate the clearance of plasma lipids by inhibiting cellular lipase activity and possess emerging roles in tumourigenesis. We used ELISA and RT-qPCR to investigate ANGPTL-3 and ANGPTL-4 expression in HCV patients with characterised fibrosis throughout the natural history of hepatitis C and in long-term HCV infection in vitro, before and after DAA treatment. ANGPTL-3 was decreased in patients with advanced fibrosis compared to other disease stages, while ANGPTL-4 was progressively increased from acute infection to cirrhosis and HCC, peaking at the advanced fibrosis stage. Only ANGPTL-3 mRNA was down-regulated during early infection in vitro, although both ANGPTLs were increased later. DAA treatment did not alter ANGPTL-3 levels in advanced fibrosis/cirrhosis and in HCV infection in vitro, in contrast to ANGPTL-4. The association between ANGPTLs and fibrosis in HCV infection was underlined by an inverse correlation between the levels of ANGPTLs and serum transforming growth factor- ß (TGF-ß). Collectively, we demonstrate the pivotal role of advanced fibrosis in defining the expression fate of ANGPTLs in HCV infection and after treatment and propose a role for ANGPTL-3 as a contributor to post-treatment deregulation of lipid metabolism that could predispose certain individuals to HCC development.


Assuntos
Proteína 4 Semelhante a Angiopoietina/biossíntese , Proteínas Semelhantes a Angiopoietina/biossíntese , Antivirais/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Hepacivirus/metabolismo , Hepatite C Crônica , Cirrose Hepática , Proteína 3 Semelhante a Angiopoietina , Linhagem Celular Tumoral , Feminino , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/metabolismo , Humanos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Masculino
5.
FEBS Open Bio ; 11(1): 237-250, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33247551

RESUMO

Hepcidin, a 25-amino acid peptide encoded by the HAMP gene and produced mainly by hepatocytes and macrophages, is a mediator of innate immunity and the central iron-regulatory hormone. Circulating hepcidin controls iron efflux by inducing degradation of the cellular iron exporter ferroportin. HCV infection is associated with hepatic iron overload and elevated serum iron, which correlate with poor antiviral responses. The HCV nonstructural NS5A protein is known to function in multiple aspects of the HCV life cycle, probably exerting its activity in concert with cellular factor(s). In this study, we attempted to delineate the effect of HCV NS5A on HAMP gene expression. We observed that transient transfection of hepatoma cell lines with HCV NS5A resulted in down-regulation of HAMP promoter activity. A similar effect was evident after transduction of Huh7 cells with a recombinant baculovirus vector expressing NS5A protein. We proceeded to construct an NS5A-expressing stable cell line, which also exhibited down-regulation of HAMP gene promoter activity and significant reduction of HAMP mRNA and hepcidin protein levels. Concurrent expression of HCV core protein, a well-characterized hepcidin inducer, revealed antagonism between those two proteins for hepcidin regulation. In attempting to identify the pathways involved in NS5A-driven reduction of hepcidin levels, we ruled out any NS5A-induced alterations in the expression of the well-known hepcidin inducers SMAD4 and STAT3. Further analysis linked the abundance of intracellular zinc ions and the deregulation of the MTF-1/MRE/hepcidin axis with the observed phenomenon. This effect could be associated with distinct phases in HCV life cycle.


Assuntos
Hepacivirus/imunologia , Hepatite C/imunologia , Hepcidinas/genética , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/isolamento & purificação , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Hepacivirus/metabolismo , Hepatite C/genética , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Inata/genética , Ferro/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fator MTF-1 de Transcrição
6.
Proc Natl Acad Sci U S A ; 115(41): 10434-10439, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30249655

RESUMO

HERV-K HML-2 (HK2) has been proliferating in the germ line of humans at least as recently as 250,000 years ago, with some integrations that remain polymorphic in the modern human population. One of the solitary HK2 LTR polymorphic integrations lies between exons 17 and 18 of RASGRF2, a gene that affects dopaminergic activity and is thus related to addiction. Here we show that this antisense HK2 integration (namely RASGRF2-int) is found more frequently in persons who inject drugs compared with the general population. In a Greek HIV-1-positive population (n = 202), we found RASGRF2-int 2.5 times (14 versus 6%) more frequently in patients infected through i.v. drug use compared with other transmission route controls (P = 0.03). Independently, in a United Kingdom-based hepatitis C virus-positive population (n = 184), we found RASGRF2-int 3.6 times (34 versus 9.5%) more frequently in patients infected during chronic drug abuse compared with controls (P < 0.001). We then tested whether RASGRF2-int could be mechanistically responsible for this association by modulating transcription of RASGRF2 We show that the CRISPR/Cas9-mediated insertion of HK2 in HEK293 cells in the exact RASGRF2 intronic position found in the population resulted in significant transcriptional and phenotypic changes. We also explored mechanistic features of other intronic HK2 integrations and show that HK2 LTRs can be responsible for generation of cis-natural antisense transcripts, which could interfere with the transcription of nearby genes. Our findings suggest that RASGRF2-int is a strong candidate for dopaminergic manipulation, and emphasize the importance of accurate mapping of neglected HERV polymorphisms in human genomic studies.


Assuntos
Células-Tronco de Carcinoma Embrionário/metabolismo , Retrovirus Endógenos/genética , Abuso de Substâncias por Via Intravenosa/genética , Transcrição Gênica , Integração Viral/genética , Fatores ras de Troca de Nucleotídeo Guanina/genética , Estudos de Casos e Controles , Criança , Estudos de Coortes , Células-Tronco de Carcinoma Embrionário/patologia , Feminino , Genoma Humano , Humanos , Masculino , Células Tumorais Cultivadas
7.
Front Immunol ; 9: 777, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713327

RESUMO

Background and aims: Genetic polymorphisms within the promoter of interferon-α receptor type-1 (IFNAR1) have been associated with the susceptibility to and the outcome of chronic hepatitis B virus (HBV) infection. However, the impact of these polymorphisms in the transcriptome of the HBV-associated hepatocellular carcinoma (HCC) remains largely unexplored. Methods: Using whole-genome and exome sequencing data from The Cancer Genome Atlas project, we characterized three single-nucleotide polymorphisms (SNPs: -568G/C, -408C/T, -3C/T) and one variable number tandem repeat [VNTR: -77(GT)n] within the IFNAR1 promoter sequence in 49 HCC patients. RNAseq data from 10 genotyped HCC samples were grouped according to their -77VNTR or -3SNP genotype to evaluate the impact of these polymorphisms on the differential expression on the HCC transcriptome. Results: There is a fourfold higher impact of the -77VNTR on the HCC transcriptome compared to the -3SNP (q < 0.1, p < 0.001). The expression of the primary IFNAR1 transcript is not affected by these polymorphisms but a secondary, HCC-specific transcript is expressed only in homozygous -77VNTR ≤8/≤8(GT)n samples (p < 0.05). At the same time, patients carrying at least one -77VNTR >8(GT) allele, presented a strong upregulation of the fibronectin-1 (FN-1) gene, which has been associated with the development of HCC. Gene Ontology and pathway enrichment analysis of the differentially expressed genes revealed a strong disruption of the PI3K-AKT signaling pathway, which can be partially triggered by the extracellular matrix FN-1. Conclusion: The IFNAR-1 promoter polymorphisms are not involved in the expression levels of the main IFNAR-1 transcript. The -77VNTR has a regulatory role on the expression of a secondary, truncated, HCC-specific transcript, which in turn coincides with disruptions in cancer-associated pathways and in FN-1 expression modifications.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Receptor de Interferon alfa e beta/genética , Carcinoma Hepatocelular/virologia , Fibronectinas/biossíntese , Regulação da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Genótipo , Hepatite B/complicações , Hepatite B Crônica/complicações , Humanos , Neoplasias Hepáticas/virologia , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Transcriptoma
8.
Infect Genet Evol ; 54: 251-262, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28687362

RESUMO

Hepatitis C virus (HCV) is an RNA positive strand virus, member of the Flaviviridae family. The HCV viral particle is composed of a capsid containing the genome, surrounded by an endoplasmic reticulum (ER)-derived lipid bilayer where E1 and E2 are assembled as heterodimers. However, different forms of viral particles have been identified in the serum of HCV-infected patients, including non-enveloped particles. Previous reports have demonstrated that HCV non-enveloped capsid-like particles (HCVne) can be generated by HCV core protein sequence. This sequence possesses a highly conserved ΥΧΧΦ motif and distal di-leucine motifs that confer primary endocytosis signals, enabling HCVne to enter hepatic cells via clathrin-mediated endocytosis. Although HCV core's primary function is to encapsidate the viral genome, it also interacts with a variety of cellular proteins in order to regulate host cell functions such as gene transcription, lipid metabolism, apoptosis and several signaling pathways. In this report, we demonstrate that the YXXΦ motif of HCV core protein is crucial for the architectural integrity of the particulate form of HCVne. Moreover, we show that the YXXΦ motif in the HCV core sequence plays a pivotal role in the signaling events following HCVne clathrin-mediated endocytosis by inducing the AP-2 clathrin adaptor protein, which in turn redirect HCVne trafficking to the lipid droplets (LDs) via the endosomal-lysosomal pathway. HCVne and LDs co-localization affects the HCV life cycle by enhancing viral replication.


Assuntos
Motivos de Aminoácidos , Sequência Conservada , Hepacivirus/genética , Proteínas do Core Viral/genética , Sequência de Aminoácidos , Linhagem Celular , Células Cultivadas , Hepacivirus/ultraestrutura , Hepatite C/virologia , Humanos , Mutação , Recombinação Genética , Proteínas do Core Viral/química , Replicação Viral
9.
Hepatology ; 65(4): 1369-1383, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27981605

RESUMO

Autotaxin (ATX) is a secreted lysophospholipase D that catalyzes the production of lysophosphatidic acid (LPA), a pleiotropic growth-factor-like lysophospholipid. Increased ATX expression has been detected in various chronic inflammatory disorders and different types of cancer; however, little is known about its role and mode of action in liver fibrosis and cancer. Here, increased ATX expression was detected in chronic liver disease (CLD) patients of different etiologies, associated with shorter overall survival. In mice, different hepatotoxic stimuli linked with the development of different forms of CLDs were shown to stimulate hepatocyte ATX expression, leading to increased LPA levels, activation of hepatic stellate cells (HSCs), and amplification of profibrotic signals. Hepatocyte-specific, conditional genetic deletion and/or transgenic overexpression of ATX established a liver profibrotic role for ATX/LPA, whereas pharmacological ATX inhibition studies suggested ATX as a possible therapeutic target in CLDs. In addition, hepatocyte ATX ablation and the consequent deregulation of lipid homeostasis was also shown to attenuate hepatocellular carcinoma (HCC) development, thus implicating ATX/LPA in the causative link of cirrhosis and HCC. CONCLUSION: ATX is a novel player in the pathogenesis of liver fibrosis and cancer and a promising therapeutic target. (Hepatology 2017;65:1369-1383).


Assuntos
Benzoxazóis/farmacologia , Carcinoma Hepatocelular/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Diester Fosfórico Hidrolases/genética , Piperazinas/farmacologia , Animais , Biópsia por Agulha , Carcinoma Hepatocelular/genética , Estudos de Casos e Controles , Células Cultivadas , Doença Crônica , Modelos Animais de Doenças , Progressão da Doença , Deleção de Genes , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Diester Fosfórico Hidrolases/efeitos dos fármacos
10.
Cell Mol Life Sci ; 74(5): 921-936, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27699453

RESUMO

Polycystin-1 (PC1) has been proposed as a chief mechanosensing molecule implicated in skeletogenesis and bone remodeling. Mechanotransduction via PC1 involves proteolytic cleavage of its cytoplasmic tail (CT) and interaction with intracellular pathways and transcription factors to regulate cell function. Here we demonstrate the interaction of PC1-CT with JAK2/STAT3 signaling axis in mechanically stimulated human osteoblastic cells, leading to transcriptional induction of Runx2 gene, a master regulator of osteoblastic differentiation. Primary osteoblast-like PC1-expressing cells subjected to mechanical-stretching exhibited a PC1-dependent increase of the phosphorylated(p)/active form of JAK2. Specific interaction of PC1-CT with pJAK2 was observed after stretching while pre-treatment of cells with PC1 (anti-IgPKD1) and JAK2 inhibitors abolished JAK2 activation. Consistently, mechanostimulation triggered PC1-mediated phosphorylation and nuclear translocation of STAT3. The nuclear phosphorylated(p)/DNA-binding competent pSTAT3 levels were augmented after stretching followed by elevated DNA-binding activity. Pre-treatment with a STAT3 inhibitor either alone or in combination with anti-IgPKD1 abrogated this effect. Moreover, PC1-mediated mechanostimulation induced elevation of Runx2 mRNA levels. ChIP assays revealed direct regulation of Runx2 promoter activity by STAT3/Runx2 after mechanical-stretching that was PC1-dependent. Our findings show that mechanical load upregulates expression of Runx2 gene via potentiation of PC1-JAK2/STAT3 signaling axis, culminating to possibly control osteoblastic differentiation and ultimately bone formation.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Janus Quinase 2/metabolismo , Mecanotransdução Celular , Osteoblastos/citologia , Fator de Transcrição STAT3/metabolismo , Canais de Cátion TRPP/metabolismo , Regulação para Cima/genética , Sequência de Bases , Linhagem Celular , Núcleo Celular/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , DNA/metabolismo , Humanos , Modelos Biológicos , Osteoblastos/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Canais de Cátion TRPP/química
11.
Virulence ; 7(6): 679-90, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27058404

RESUMO

Mechanisms that favor Hepatitis C virus (HCV) persistence over clearance are unclear, but involve defective innate immunity. Chronic infection is characterized by hepatic iron overload, hyperferraemia and hyperferittinaemia. Hepcidin modulates iron egress via ferroportin and its storage in ferritin. Chronic HCV patients have decreased hepcidin, while HCV replication is modified by HAMP silencing. We aimed to investigate interactions between HCV and hepcidin, during acute and chronic disease, and putative alterations in cellular iron homeostasis that enhance HCV propagation and promote viral persistence. Thus, we used HCV JFH-1-infected co-cultures of Huh7.5 hepatoma and THP-1 macrophage cells, HCV patients' sera and Huh7 hepcidin-expressing cells transfected with HCV replicons. Hepcidin levels were elevated in acutely infected patients, but correlated with viral load in chronic patients. HAMP expression was up-regulated early in HCV infection in vitro, with corresponding changes in ferritin and FPN. Hepcidin overexpression enhanced both viral translation and replication. In HCV-infected co-cultures, we observed increased hepcidin, reduced hepatoma ferritin and a concurrent rise in macrophaghic ferritin over time. Altered iron levels complemented amplified replication in hepatoma cells and one replication round in macrophages. Iron-loading of macrophages led to enhancement of hepatic HCV replication through reversed ferritin "flow." Viral transmissibility from infected macrophages to naïve hepatoma cells was induced by iron. We propose that HCV control over iron occurs both by intracellular iron sequestration, through hepcidin, and intercellular iron mobilisation via ferritin, as means toward enhanced replication. Persistence could be achieved through HCV-induced changes in macrophagic iron that enhances viral replication in these cells.


Assuntos
Hepacivirus/fisiologia , Hepatite C/virologia , Homeostase , Ferro/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Carcinoma Hepatocelular , Linhagem Celular , Técnicas de Cocultura , Ferritinas/metabolismo , Hepacivirus/genética , Hepatite C/sangue , Hepatite C/metabolismo , Hepatite C Crônica/sangue , Hepatite C Crônica/metabolismo , Hepatite C Crônica/virologia , Hepcidinas/sangue , Hepcidinas/genética , Hepcidinas/metabolismo , Humanos , Sobrecarga de Ferro , Neoplasias Hepáticas , Macrófagos/química , Replicon , Replicação Viral
12.
Oncotarget ; 7(5): 5576-97, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26716646

RESUMO

Breast carcinogenesis is a multi-step process in which membrane receptor tyrosine kinases are crucial participants. Lots of research has been done on epidermal growth factor receptor (EGFR) and HER-2 with important clinical results. However, breast cancer patients present intrinsic or acquired resistance to available HER-2-directed therapies, mainly due to HER-3. Using new techniques, such as proximity ligation assay, herein we evaluate the dimerization pattern of HER-3 and the importance of context-dependent dimer formation between HER-3 and other HER protein family members. Additionally, we show that the efficacy of novel HER-3 targeting agents can be better predicted in certain breast cancer patient sub-groups based on the dimerization pattern of HER protein family members. Moreover, this model was also evaluated and reproduced in human paraffin-embedded breast cancer tissues.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Humanos , Receptor ErbB-3/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
13.
IEEE J Biomed Health Inform ; 19(1): 181-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25099894

RESUMO

Hepatitis B virus (HBV) and hepatitis C virus (HCV) infection are the major causes of chronic liver disease, cirrhosis and hepatocellular carcinoma (HCC). The resolution or chronicity of acute infection is dependent on a complex interplay between virus and innate/adaptive immunity. The mechanisms that lead a significant proportion of patients to more severe liver disease are not clearly defined and involve virus induced host gene/protein alterations. The utilization of protein interaction networks (PINs) is expected to identify novel aspects of the disease concerning the patients' immune response to virus as well as the main pathways that are involved in the development of fibrosis and HCC. In this study, we designed several PINs for HBV and HCV and employed topological, modular, and functional analysis techniques in order to determine significant network nodes that correspond to prominent candidate biomarkers. The networks were built using data from various interaction databases. When the overall PINs of HBV and HCV were compared, 48 nodes were found in common. The implementation of a statistical ranking procedure indicated that three of them are of higher importance.


Assuntos
Hepacivirus/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B/metabolismo , Hepatite C/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas Virais/metabolismo , Biomarcadores/metabolismo , Simulação por Computador , Mineração de Dados/métodos , Bases de Dados de Proteínas , Sistemas de Liberação de Medicamentos/métodos , Humanos , Modelos Biológicos , Proteoma/metabolismo , Transdução de Sinais
14.
Infect Genet Evol ; 26: 113-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24815730

RESUMO

Translation initiation of the Hepatitis C virus (HCV) genome is driven by an internal ribosome entry site (IRES), located within the 5' non-coding region. Several studies have suggested that different cellular non canonical proteins or viral proteins can regulate the HCV IRES activity. However, the role of the viral proteins on HCV translation remains controversial. In this report, we confirmed previous studies showing that NS5A down-regulates IRES activity in HepG2 but not in Huh7 cells suggesting that the NS5A effect on HCV IRES is cell-type dependent. Additionally, we provide strong evidence that activated PKR up-regulates the IRES activity while silencing of endogenous PKR had the opposite effect. Furthermore, we present data indicating that the NS5A-mediated inhibitory effect on IRES-dependent translation could be linked with the PKR inactivation. Finally, we show that NS5A from GBV-C but not from GBV-B down-regulates HCV IRES activity in the absence or the presence of PKR over expression. Notably, HCV and GBV-C but not GBV-B NS5A contains a previously identified PKR interacting protein domain.


Assuntos
Regiões 5' não Traduzidas , Hepacivirus/genética , Hepacivirus/metabolismo , Biossíntese de Proteínas , Proteínas não Estruturais Virais/metabolismo , eIF-2 Quinase/metabolismo , Sequência de Aminoácidos , Ativação Enzimática , Vírus GB C/genética , Vírus GB C/metabolismo , Expressão Gênica , Regulação Viral da Expressão Gênica , Células Hep G2 , Hepatite C/genética , Hepatite C/metabolismo , Hepatite C/virologia , Humanos , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência , Proteínas não Estruturais Virais/química , eIF-2 Quinase/genética
15.
Cell Mol Life Sci ; 71(21): 4243-58, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24718935

RESUMO

Hepatitis C virus (HCV) infection is associated with hepatic iron overload and elevated serum iron that correlate to poor antiviral responses. Hepcidin (HAMP), a 25-aa cysteine-rich liver-specific peptide, controls iron homeostasis. Its expression is up-regulated in inflammation and iron excess. HCV-mediated hepcidin regulation remains controversial. Chronic HCV patients possess relatively low hepcidin levels; however, elevated HAMP mRNA has been reported in HCV core transgenic mice and HCV replicon-expressing cells. We investigated the effect of HCV core protein on HAMP gene expression and delineated the complex interplay of molecular mechanisms involved. HCV core protein up-regulated HAMP promoter activity, mRNA, and secreted protein levels. Enhanced promoter activity was abolished by co-transfections of core with HAMP promoter constructs containing mutated/deleted BMP and STAT binding sites. Dominant negative constructs, pharmacological inhibitors, and silencing experiments against STAT3 and SMAD4 confirmed the participation of both pathways in HAMP gene regulation by core protein. STAT3 and SMAD4 expression levels were found increased in the presence of HCV core, which orchestrated SMAD4 translocation into the nucleus and STAT3 phosphorylation. To further understand the mechanisms governing the core effect, the role of the JAK/STAT-activating kinase CK2 was investigated. A CK2-dominant negative construct, a CK2-specific inhibitor, and RNAi interference abrogated the core-induced increase on HAMP promoter activity, mRNA, and protein levels, while CK2 acted in synergy with core to significantly enhance HAMP gene expression. Therefore, HCV core up-regulates HAMP gene transcription via a complex signaling network that requires both SMAD/BMP and STAT3 pathways and CK2 involvement.


Assuntos
Caseína Quinase II/metabolismo , Regulação Enzimológica da Expressão Gênica , Hepacivirus/metabolismo , Hepcidinas/metabolismo , Proteínas do Core Viral/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Regulação Viral da Expressão Gênica , Inativação Gênica , Células Hep G2 , Homeostase , Humanos , Ferro/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína Smad4/metabolismo , Regulação para Cima
16.
Virulence ; 5(4): 465-76, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24626108

RESUMO

An estimated 30-40% of patients with chronic hepatitis C have elevated serum iron, transferrin saturation, and ferritin levels. Clinical data suggest that iron is a co-morbidity factor for disease progression following HCV infection. Iron is essential for a number of fundamental metabolic processes in cells and organisms. Mammalian iron homeostasis is tightly regulated and this is maintained through the coordinated action of sensory and regulatory networks that modulate the expression of iron-related proteins at the transcriptional and/or posttranscriptional levels. Disturbances of iron homeostasis have been implicated in infectious disease pathogenesis. Viruses, similarly to other pathogens, can escape recognition by the immune system, but they need iron from their host to grow and spread. Hepcidin is a 25-aa peptide, present in human serum and urine and represents the key peptide hormone, which modulates iron homeostasis in the body. It is synthesized predominantly by hepatocytes and its mature form is released in circulation. In this review, we discuss recent advances in the exciting crosstalk of molecular mechanisms and cell signaling pathways by which iron and hepcidin production influences HCV-induced liver disease.


Assuntos
Hepacivirus/fisiologia , Hepatite C Crônica/metabolismo , Hepcidinas/metabolismo , Ferro/metabolismo , Animais , Hepatite C Crônica/virologia , Humanos , Fígado/metabolismo , Fígado/virologia
17.
Cell Mol Life Sci ; 70(1): 167-180, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23014991

RESUMO

Mechanical forces trigger biological responses in bone cells that ultimately control osteoblastogenesis and bone program. Although several mechanosensors have been postulated, the precise mechanotransduction pathway remains obscure as the initial mechanosensing event has not yet been identified. Studies in kidney cells have shown that polycystin-1 (PC1), via its extracellular N-terminal part, may function as an "antenna-like" protein providing a linkage between environmental cues and their conversion into biochemical responses that regulate various cellular processes via the calcineurin/NFAT pathway. Here we explored the involvement of PC1 in mechanical load (stretching)-induced signaling cascades that control osteoblastogenesis/bone formation. FACS and TransAM Transcription Factor ELISA analyses employing extracts from primary human osteoblast-like, PC1 expressing cells subjected to mechanical stretching (0-6 h) revealed that unphosphorylated/DNA-binding competent NFATc1 increased at 0.5-1 h and returned to normal at 6 h. In accordance with the activation mechanism of NFATc1, stretching of cultured cells pre-treated with cyclosporin A (CsA, a specific inhibitor of the calcineurin/NFAT pathway) abrogated the observed decrease in the abundance of the cytoplasmic pNFATc1 (phosphorylated/inactive) species. Furthermore, stretching of osteoblastic cells pre-treated with an antibody against the mechanosensing N-terminal part of PC1 also abrogated the observed decrease in the cytoplasmic levels of the inactive pNFATc1 species. Importantly, under similar conditions (pre-incubation of stretched cells with the inhibitory anti-PC1 antibody), the expression of the key osteoblastic, NFATc1-target gene runx2 decreased compared to untreated cells. Therefore, PC1 acts as chief mechanosensing molecule that modulates osteoblastic gene transcription and hence bone-cell differentiation through the calcineurin/NFAT signaling cascade.


Assuntos
Calcineurina/metabolismo , Mecanotransdução Celular/fisiologia , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/fisiologia , Canais de Cátion TRPP/fisiologia , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Humanos , Osteoblastos/metabolismo , Osteogênese/fisiologia , Estimulação Física , RNA Mensageiro/metabolismo , Canais de Cátion TRPP/metabolismo
18.
Biochim Biophys Acta ; 1813(10): 1854-62, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21767578

RESUMO

Hepatitis C virus (HCV) is an RNA positive strand virus, member of the Flaviviridae family. The viral particle is composed of a capsid containing the genome, surrounded by E1 and E2 proteins, however different forms of viral particles have been observed including non-enveloped particles. Previous reports have proposed that hepatitis C non-enveloped capsid-like particles (HCVne) enter cells of hepatic origin via clathrin-mediated endocytosis, during which different signaling events occur. In this report we show that HCVne particles are capable of inducing the recently discovered ERK5 pathway, in a dose dependent way. The ERK5 pathway can be activated by growth factors and other extracellular signals. This specific activation occurs through a well characterized upstream kinase, MEK5, and is capable of inducing gene regulation of mef2. In contrast, when HCV core structural and NS5A non-structural proteins were expressed endogenously no activation of this pathway was detected. These cell signaling events could be of critical importance and might give clues for the elucidation of cellular manifestations associated with HCV infection.


Assuntos
Proteínas do Capsídeo/farmacologia , Hepacivirus , Proteínas de Domínio MADS/metabolismo , MAP Quinase Quinase 5/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Fatores de Regulação Miogênica/metabolismo , Vírion/fisiologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Células Hep G2 , Hepacivirus/fisiologia , Humanos , Proteínas de Domínio MADS/fisiologia , MAP Quinase Quinase 5/fisiologia , Fatores de Transcrição MEF2 , Proteína Quinase 7 Ativada por Mitógeno/fisiologia , Modelos Biológicos , Fatores de Regulação Miogênica/fisiologia , Transdução de Sinais/efeitos dos fármacos , Spodoptera , Proteínas do Core Viral/farmacologia , Proteínas do Envelope Viral/farmacologia , Proteínas não Estruturais Virais/farmacologia
19.
PLoS One ; 6(1): e15871, 2011 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-21283512

RESUMO

The biological role of the protein encoded by the alternative open reading frame (core+1/ARF) of the Hepatitis C virus (HCV) genome remains elusive, as does the significance of the production of corresponding antibodies in HCV infection. We investigated the prevalence of anti-core and anti-core+1/ARFP antibodies in HCV-positive blood donors from Cambodia, using peptide and recombinant protein-based ELISAs. We detected unusual serological profiles in 3 out of 58 HCV positive plasma of genotype 1a. These patients were negative for anti-core antibodies by commercial and peptide-based assays using C-terminal fragments of core but reacted by Western Blot with full-length core protein. All three patients had high levels of anti-core+1/ARFP antibodies. Cloning of the cDNA that corresponds to the core-coding region from these sera resulted in the expression of both core and core+1/ARFP in mammalian cells. The core protein exhibited high amino-acid homology with a consensus HCV1a sequence. However, 10 identical synonymous mutations were found, and 7 were located in the aa(99-124) region of core. All mutations concerned the third base of a codon, and 5/10 represented a T>C mutation. Prediction analyses of the RNA secondary structure revealed conformational changes within the stem-loop region that contains the core+1/ARFP internal AUG initiator at position 85/87. Using the luciferase tagging approach, we showed that core+1/ARFP expression is more efficient from such a sequence than from the prototype HCV1a RNA. We provide additional evidence of the existence of core+1/ARFP in vivo and new data concerning expression of HCV core protein. We show that HCV patients who do not produce normal anti-core antibodies have unusually high levels of anti-core+1/ARFP and harbour several identical synonymous mutations in the core and core+1/ARFP coding region that result in major changes in predicted RNA structure. Such HCV variants may favour core+1/ARFP production during HCV infection.


Assuntos
Hepacivirus/genética , Anticorpos Anti-Hepatite C/sangue , Hepatite C/virologia , Mutação , Proteínas do Core Viral/genética , Hepacivirus/imunologia , Hepatite C/imunologia , Humanos , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , RNA Viral/química , Proteínas do Core Viral/imunologia
20.
Virus Res ; 155(1): 213-20, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20959129

RESUMO

The hepatitis C virus possesses an alternative open reading frame overlapping the Core gene, whose products are referred to as Core+1 or alternative reading frame (ARF) or F protein(s). Extensive studies on genotype HCV-1a demonstrated that ribosomal frameshifting supports the synthesis of core+1 protein, when ten consecutive As are present within core codons 9-11 whereas, in the absence of this motif, expression of the core+1 ORF is mediated mainly by internal translation initiation. However, in HCV-1b, no Core+1 isoforms produced by internal translation initiation have been described. Using constructs which contain the Core/Core+1(342-770) region from previously described HCV-1b clinical isolates from liver biopsies, we provide evidence for the synthesis of Core+1 proteins by internal translation initiation in transiently transfected mammalian cells using nuclear or cytoplasmic expression systems. Site directed mutagenesis analyses revealed that (a) the synthesis of Core+1 proteins is independent from the polyprotein expression, as we observed an increase of Core+1 protein expression from constructs lacking the polyprotein translation initiator, (b) the main Core+1 product is expressed from AUG(85), similarly to the Core+1/S protein of HCV-1a, (c) synthesis of Core+1 isoforms is also mediated from GUG(58) or under certain conditions GUG(26) internal codons, albeit at lower efficiency. Finally, comparable to HCV-1a Core+1 proteins, the HCV-1b Core+1 products are negatively regulated by core expression and the proteaosomal pathway. The expression of Core+1 ORF from HCV-1b clinical isolates and the preservation of translation initiation mechanism that stimulates its expression encourage investigating the role of these proteins in HCV pathogenesis.


Assuntos
Hepacivirus/fisiologia , Biossíntese de Proteínas , Proteínas do Core Viral/biossíntese , Linhagem Celular , Códon de Iniciação , Mudança da Fase de Leitura do Gene Ribossômico , Genótipo , Hepacivirus/genética , Hepatócitos/virologia , Humanos , Proteínas do Core Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA