Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Radiosurg SBRT ; 9(1): 83-90, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029013

RESUMO

Stereotactic body proton radiotherapy (SBPT) has the potential to be an effective tool for treating liver malignancies. While proton therapy enables near-zero exit dose and could improve normal tissue sparing, including liver and other surrounding structures, there are challenges in implementing the SBPT technique for proton therapy, including respiratory motion, range uncertainties, dose regimen, treatment planning, and image guidance. This article summarizes the technical and clinical challenges facing SBPT, along with the potential benefits of SBPT for liver malignancies. The clinical implementation of the technique is also described for the first six patients treated at the Johns Hopkins Proton Therapy Center using liver SBPT.

2.
Cancers (Basel) ; 15(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37509380

RESUMO

Robust optimization in proton therapy ensures adequate target coverage; however, validation of fractional plan quality and setup uncertainty in patients has not been performed. We aimed to assess plan robustness on delivered head and neck proton plans classified into two categories: (1) primary only (PO) and (2) primary and neck nodal (PNN) coverage. Registration at the machine was utilized for daily CBCT to generate a synthetic CT. The dose for the clinical target volume (CTV) and organs at risk (OAR) was compared to the expected robustness bands using 3.5% range uncertainty and 3 mm vs. 5 mm setup uncertainty. The fractional deviation was defined as D95% and V100% outside of uncertainty constraints. About 203 daily fractions from 6 patients were included for analysis. The percentage of fractions that exceeded robustness calculations was greater in 3 mm as compared to 5 mm setup uncertainty for both CTV and OAR volumes. PO plans had clinically insignificant average fractional deviation, less than 1%, in delivered D95% and V100%. In comparison, PNN plans had up to 2.2% average fractional deviation in delivered V100% using 3 mm robustness. Given the need to balance dose accuracy with OAR sparing, we recommend the utilization of 3 mm setup uncertainty as an acceptable simulation of the dose delivered.

3.
Semin Radiat Oncol ; 33(3): 252-261, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37331780

RESUMO

Quantitative image analysis, also known as radiomics, aims to analyze large-scale quantitative features extracted from acquired medical images using hand-crafted or machine-engineered feature extraction approaches. Radiomics has great potential for a variety of clinical applications in radiation oncology, an image-rich treatment modality that utilizes computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) for treatment planning, dose calculation, and image guidance. A promising application of radiomics is in predicting treatment outcomes after radiotherapy such as local control and treatment-related toxicity using features extracted from pretreatment and on-treatment images. Based on these individualized predictions of treatment outcomes, radiotherapy dose can be sculpted to meet the specific needs and preferences of each patient. Radiomics can aid in tumor characterization for personalized targeting, especially for identifying high-risk regions within a tumor that cannot be easily discerned based on size or intensity alone. Radiomics-based treatment response prediction can aid in developing personalized fractionation and dose adjustments. In order to make radiomics models more applicable across different institutions with varying scanners and patient populations, further efforts are needed to harmonize and standardize the acquisition protocols by minimizing uncertainties within the imaging data.


Assuntos
Neoplasias , Radioterapia (Especialidade) , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Tomografia por Emissão de Pósitrons , Radioterapia (Especialidade)/métodos , Tomografia Computadorizada por Raios X , Imageamento por Ressonância Magnética
4.
Front Genet ; 14: 1112914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968604

RESUMO

Introduction: Imaging of tumors is a standard step in diagnosing cancer and making subsequent treatment decisions. The field of radiomics aims to develop imaging based biomarkers using methods rooted in artificial intelligence applied to medical imaging. However, a challenging aspect of developing predictive models for clinical use is that many quantitative features derived from image data exhibit instability or lack of reproducibility across different imaging systems or image-processing pipelines. Methods: To address this challenge, we propose a Bayesian sparse modeling approach for image classification based on radiomic features, where the inclusion of more reliable features is favored via a probit prior formulation. Results: We verify through simulation studies that this approach can improve feature selection and prediction given correct prior information. Finally, we illustrate the method with an application to the classification of head and neck cancer patients by human papillomavirus status, using as our prior information a reliability metric quantifying feature stability across different imaging systems.

5.
Adv Radiat Oncol ; 8(1): 101069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36213549

RESUMO

Purpose: Proton therapy use for breast cancer has grown due to advantages in coverage and potentially reduced late toxicities compared with conventional radiation therapy. We aimed to provide recommendations for robustness criteria, daily imaging, and quality assurance computed tomography (QA CT) frequency for these patients. Methods and Materials: All patients treated for localized breast cancer at the Johns Hopkins Proton Center between November 2019 and February 2022 were eligible for inclusion. Daily shift information was extracted and examined through control charts. If an adaptive plan was used, the time to replan was recorded. Three and 5 mm setup uncertainty was used to calculate robustness. Robust evaluation of QA CTs was compared with initial robustness range for breast/chest wall and lymph node target coverage. Results: Sixty-six patients were included: 19 with intact breast, 25 with non-reconstructed chest wall, and 22 with chest wall plus expanders or implants. Sixteen percent, 13%, and 41% of breast, chest wall, and expander/implant patients had a replan. Only patients with expanders or implants required 2 adaptive plans. Daily shift data showed large variation and did not correlate with plan adaptation. Patients without adaptive plans had QA CTs with dose-volume histogram metrics within robustness more frequently than those with adaptive plans. Using 3 mm robustness for patients who did not require an adaptive plan, 91% to 100% of patients had QA CTs within robustness, while 55% to 60% of patients with an adaptive plan had QA CTs within robustness for the axilla, internal mammary nodes, and supraclavicular nodes. Five millimeter setup uncertainty did not significantly improve this. Conclusions: We recommend using daily cone beam CT because of the large variation in daily setup with 3 mm setup uncertainty in robustness analysis. If daily cone beam CT imaging is not available, then larger setup uncertainty should be used. Two QA CTs should be conducted during treatment if the patient has expanders or implants; otherwise, one QA CT is sufficient.

6.
Front Oncol ; 12: 830981, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35449577

RESUMO

Purpose: This study aimed to quantitatively evaluate the range uncertainties that arise from daily cone-beam CT (CBCT) images for proton dose calculation compared to CT using a measurement-based technique. Methods: For head and thorax phantoms, wedge-shaped intensity-modulated proton therapy (IMPT) treatment plans were created such that the gradient of the wedge intersected and was measured with a 2D ion chamber array. The measured 2D dose distributions were compared with 2D dose planes extracted from the dose distributions using the IMPT plan calculated on CT and CBCT. Treatment plans of a thymoma cancer patient treated with breath-hold (BH) IMPT were recalculated on 28 CBCTs and 9 CTs, and the resulting dose distributions were compared. Results: The range uncertainties for the head phantom were determined to be 1.2% with CBCT, compared to 0.5% for CT, whereas the range uncertainties for the thorax phantom were 2.1% with CBCT, compared to 0.8% for CT. The doses calculated on CBCT and CT were similar with similar anatomy changes. For the thymoma patient, the primary source of anatomy change was the BH uncertainty, which could be up to 8 mm in the superior-inferior (SI) direction. Conclusion: We developed a measurement-based range uncertainty evaluation method with high sensitivity and used it to validate the accuracy of CBCT-based range and dose calculation. Our study demonstrated that the CBCT-based dose calculation could be used for daily dose validation in selected proton patients.

8.
Sci Rep ; 11(1): 17633, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480036

RESUMO

Radiomics is a promising technique for discovering image based biomarkers of therapy response in cancer. Reproducibility of radiomics features is a known issue that is addressed by the image biomarker standardisation initiative (IBSI), but it remains challenging to interpret previously published radiomics signatures. This study investigates the reproducibility of radiomics features calculated with two widely used radiomics software packages (IBEX, MaZda) in comparison to an IBSI compliant software package (PyRadiomics). Intensity histogram, shape and textural features were extracted from 334 diffusion weighted magnetic resonance images of 59 head and neck cancer (HNC) patients from the PREDICT-HN observational radiotherapy study. Based on name and linear correlation, PyRadiomics shares 83 features with IBEX and 49 features with MaZda, a sub-set of well correlated features are considered reproducible (IBEX: 15 features, MaZda: 18 features). We explore the impact of including non-reproducible radiomics features in a HNC radiotherapy response model. It is possible to classify equivalent patient groups using radiomic features from either software, but only when restricting the model to reliable features using a correlation threshold method. This is relevant for clinical biomarker validation trials as it provides a framework to assess the reproducibility of reported radiomic signatures from existing trials.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Pescoço/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Software
9.
J Appl Clin Med Phys ; 22(5): 168-174, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33779037

RESUMO

PURPOSE: To investigate the impact of computed tomography (CT) image acquisition and reconstruction parameters, including slice thickness, pixel size, and dose, on automatic contouring algorithms. METHODS: Eleven scans from patients with head-and-neck cancer were reconstructed with varying slice thicknesses and pixel sizes. CT dose was varied by adding noise using low-dose simulation software. The impact of these imaging parameters on two in-house auto-contouring algorithms, one convolutional neural network (CNN)-based and one multiatlas-based system (MACS) was investigated for 183 reconstructed scans. For each algorithm, auto-contours for organs-at-risk were compared with auto-contours from scans with 3 mm slice thickness, 0.977 mm pixel size, and 100% CT dose using Dice similarity coefficient (DSC), Hausdorff distance (HD), and mean surface distance (MSD). RESULTS: Increasing the slice thickness from baseline value of 3 mm gave a progressive reduction in DSC and an increase in HD and MSD on average for all structures. Reducing the CT dose only had a relatively minimal effect on DSC and HD. The rate of change with respect to dose for both auto-contouring methods is approximately 0. Changes in pixel size had a small effect on DSC and HD for CNN-based auto-contouring with differences in DSC being within 0.07. Small structures had larger deviations from the baseline values than large structures for DSC. The relative differences in HD and MSD between the large and small structures were small. CONCLUSIONS: Auto-contours can deviate substantially with changes in CT acquisition and reconstruction parameters, especially slice thickness and pixel size. The CNN was less sensitive to changes in pixel size, and dose levels than the MACS. The results contraindicated more restrictive values for the parameters should be used than a typical imaging protocol for head-and-neck.


Assuntos
Neoplasias de Cabeça e Pescoço , Tomografia Computadorizada por Raios X , Algoritmos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Órgãos em Risco
10.
Med Phys ; 47(8): 3752-3771, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32453879

RESUMO

Computed tomography (CT) technology has rapidly evolved since its introduction in the 1970s. It is a highly important diagnostic tool for clinicians as demonstrated by the significant increase in utilization over several decades. However, much of the effort to develop and advance CT applications has been focused on improving visual sensitivity and reducing radiation dose. In comparison to these areas, improvements in quantitative CT have lagged behind. While this could be a consequence of the technological limitations of conventional CT, advanced dual-energy CT (DECT) and photon-counting detector CT (PCD-CT) offer new opportunities for quantitation. Routine use of DECT is becoming more widely available and PCD-CT is rapidly developing. This review covers efforts to address an unmet need for improved quantitative imaging to better characterize disease, identify biomarkers, and evaluate therapeutic response, with an emphasis on multi-energy CT applications. The review will primarily discuss applications that have utilized quantitative metrics using both conventional and DECT, such as bone mineral density measurement, evaluation of renal lesions, and diagnosis of fatty liver disease. Other topics that will be discussed include efforts to improve quantitative CT volumetry and radiomics. Finally, we will address the use of quantitative CT to enhance image-guided techniques for surgery, radiotherapy and interventions and provide unique opportunities for development of new contrast agents.


Assuntos
Fótons , Tomografia Computadorizada por Raios X , Tomografia
11.
J Appl Clin Med Phys ; 20(11): 199-205, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31609076

RESUMO

PURPOSE: Routine quality assurance (QA) testing to identify malfunctions in medical imaging devices is a standard practice and plays an important role in meeting quality standards. However, current daily computed tomography (CT) QA techniques have proven to be inadequate for the detection of subtle artifacts on scans. Therefore, we investigated the ability of a radiomics phantom to detect subtle artifacts not detected in conventional daily QA. METHODS: An updated credence cartridge radiomics phantom was used in this study, with a focus on two of the cartridges (rubber and cork) in the phantom. The phantom was scanned using a Siemens Definition Flash CT scanner, which was reported to produce a subtle line pattern artifact. Images were then imported into the IBEX software program, and 49 features were extracted from the two cartridges using four different preprocessing techniques. Each feature was then compared with features for the same scanner several months previously and with features from controlled CT scans obtained using 100 scanners. RESULTS: Of 196 total features for the test scanner, 79 (40%) from the rubber cartridge and 70 (36%) from the cork cartridge were three or more standard deviations away from the mean of the controlled scan population data. Feature values for the artifact-producing scanner were closer to the population mean when features were preprocessed with Butterworth smoothing. The feature most sensitive to the artifact was co-occurrence matrix maximum probability. The deviation from the mean for this feature was more than seven times greater when the scanner was malfunctioning (7.56 versus 1.01). CONCLUSIONS: Radiomics features extracted from a texture phantom were able to identify an artifact-producing scanner as an outlier among 100 CT scanners. This preliminary analysis demonstrated the potential of radiomics in CT QA to identify subtle artifacts not detected using the currently employed daily QA techniques.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Linfoma/diagnóstico por imagem , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Tomógrafos Computadorizados/normas , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Humanos , Tomografia Computadorizada por Raios X/instrumentação
12.
PLoS One ; 14(9): e0221877, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31487307

RESUMO

Radiomics studies require large patient cohorts, which often include patients imaged using different imaging protocols. We aimed to determine the impact of variability in imaging protocol parameters and interscanner variability using a phantom that produced feature values similar to those of patients. Positron emission tomography (PET) scans of a Hoffman brain phantom were acquired on GE Discovery 710, Siemens mCT, and Philips Vereos scanners. A standard-protocol scan was acquired on each machine, and then each parameter that could be changed was altered individually. The phantom was contoured with 10 regions of interest (ROIs). Values for 45 features with 2 different preprocessing techniques were extracted for each image. To determine the impact of each parameter on the reliability of each radiomics feature, the intraclass correlation coefficient (ICC) was calculated with the ROIs as the subjects and the parameter values as the raters. For interscanner comparisons, we compared the standard deviation of each radiomics feature value from the standard-protocol images to the standard deviation of the same radiomics feature from PET scans of 224 patients with non-small cell lung cancer. When the pixel size was resampled prior to feature extraction, all features had good reliability (ICC > 0.75) for the field of view and matrix size. The time per bed position had excellent reliability (ICC > 0.9) on all features. When the filter cutoff was restricted to values below 6 mm, all features had good reliability. Similarly, when subsets and iterations were restricted to reasonable values used in clinics, almost all features had good reliability. The average ratio of the standard deviation of features on the phantom scans to that of the NSCLC patient scans was 0.73 using fixed-bin-width preprocessing and 0.92 using 64-level preprocessing. Most radiomics feature values had at least good reliability when imaging protocol parameters were within clinically used ranges. However, interscanner variability was about equal to interpatient variability; therefore, caution must be used when combining patients scanned on equipment from different vendors in radiomics data sets.


Assuntos
Algoritmos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluordesoxiglucose F18 , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Compostos Radiofarmacêuticos , Estudos Retrospectivos
13.
PLoS One ; 14(9): e0222509, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536526

RESUMO

Radiomics studies require many patients in order to power them, thus patients are often combined from different institutions and using different imaging protocols. Various studies have shown that imaging protocols affect radiomics feature values. We examined whether using data from cohorts with controlled imaging protocols improved patient outcome models. We retrospectively reviewed 726 CT and 686 PET images from head and neck cancer patients, who were divided into training or independent testing cohorts. For each patient, radiomics features with different preprocessing were calculated and two clinical variables-HPV status and tumor volume-were also included. A Cox proportional hazards model was built on the training data by using bootstrapped Lasso regression to predict overall survival. The effect of controlled imaging protocols on model performance was evaluated by subsetting the original training and independent testing cohorts to include only patients whose images were obtained using the same imaging protocol and vendor. Tumor volume, HPV status, and two radiomics covariates were selected for the CT model, resulting in an AUC of 0.72. However, volume alone produced a higher AUC, whereas adding radiomics features reduced the AUC. HPV status and one radiomics feature were selected as covariates for the PET model, resulting in an AUC of 0.59, but neither covariate was significantly associated with survival. Limiting the training and independent testing to patients with the same imaging protocol reduced the AUC for CT patients to 0.55, and no covariates were selected for PET patients. Radiomics features were not consistently associated with survival in CT or PET images of head and neck patients, even within patients with the same imaging protocol.


Assuntos
Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Adulto Jovem
14.
J Appl Clin Med Phys ; 20(8): 47-55, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31294923

RESUMO

The purpose of this study is to investigate the dosimetric impact of multi-leaf collimator (MLC) positioning errors on a Varian Halcyon for both random and systematic errors, and to evaluate the effectiveness of portal dosimetry quality assurance in catching clinically significant changes caused by these errors. Both random and systematic errors were purposely added to 11 physician-approved head and neck volumetric modulated arc therapy (VMAT) treatment plans, yielding a total of 99 unique plans. Plans were then delivered on a preclinical Varian Halcyon linear accelerator and the fluence was captured by an opposed portal dosimeter. When comparing dose-volume histogram (DVH) values of plans with introduced MLC errors to known good plans, clinically significant changes to target structures quickly emerged for plans with systematic errors, while random errors caused less change. For both error types, the magnitude of clinically significant changes increased as error size increased. Portal dosimetry was able to detect all systematic errors, while random errors of ±5 mm or less were unlikely to be detected. Best detection of clinically significant errors, while minimizing false positives, was achieved by following the recommendations of AAPM TG-218. Furthermore, high- to moderate correlation was found between dose DVH metrics for normal tissues surrounding the target and portal dosimetry pass rates. Therefore, it may be concluded that portal dosimetry on the Halcyon is robust enough to detect errors in MLC positioning before they introduce clinically significant changes to VMAT treatment plans.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Aceleradores de Partículas/instrumentação , Posicionamento do Paciente , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Humanos , Órgãos em Risco/efeitos da radiação , Radiometria/métodos , Radiometria/normas , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
15.
Invest Radiol ; 54(5): 288-295, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30570504

RESUMO

The sharpness of the kernels used for image reconstruction in computed tomography affects the values of the quantitative image features. We sought to identify the kernels that produce similar feature values to enable a more effective comparison of images produced using scanners from different manufactures. We also investigated a new image filter designed to change the kernel-related component of the frequency spectrum of a postreconstruction image from that of the initial kernel to that of a preferred kernel. A radiomics texture phantom was imaged using scanners from GE, Philips, Siemens, and Toshiba. Images were reconstructed multiple times, varying the kernel from smooth to sharp. The phantom comprised 10 cartridges of various textures. A semiautomated method was used to produce 8 × 2 × 2 cm regions of interest for each cartridge and for all scans. For each region of interest, 38 radiomics features from the categories intensity direct (n = 12), gray-level co-occurrence matrix (n = 21), and neighborhood gray-tone difference matrix (n = 5) were extracted. We then calculated the fractional differences of the features from those of the baseline kernel (GE Standard). To gauge the importance of the differences, we scaled them by the coefficient of variation of the same feature from a cohort of patients with non-small cell lung cancer. The noise power spectra for each kernel were estimated from the phantom's solid acrylic cartridge, and kernel-homogenization filters were developed from these estimates. The Philips C, Siemens B30f, and Toshiba FC24 kernels produced feature values most similar to GE Standard. The kernel homogenization filters reduced the median differences from baseline to less than 1 coefficient of variation in the patient population for all of the GE, Philips, and Siemens kernels except for GE Edge and Toshiba kernels. For prospective computed tomographic radiomics studies, the scanning protocol should specify kernels that have been shown to produce similar feature values. For retrospective studies, kernel homogenization filters can be designed and applied to reduce the kernel-related differences in the feature values.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Estudos de Avaliação como Assunto , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Estudos Prospectivos , Estudos Retrospectivos
16.
J Appl Clin Med Phys ; 19(6): 306-315, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30272385

RESUMO

A large number of surveys have been sent to the medical physics community addressing many clinical topics for which the medical physicist is, or may be, responsible. Each survey provides an insight into clinical practice relevant to the medical physics community. The goal of this study was to create a summary of these surveys giving a snapshot of clinical practice patterns. Surveys used in this study were created using SurveyMonkey and distributed between February 6, 2013 and January 2, 2018 via the MEDPHYS and MEDDOS listserv groups. The format of the surveys included questions that were multiple choice and free response. Surveys were included in this analysis if they met the following criteria: more than 20 responses, relevant to radiation therapy physics practice, not single-vendor specific, and formatted as multiple-choice questions (i.e., not exclusively free-text responses). Although the results of free response questions were not explicitly reported, they were carefully reviewed, and the responses were considered in the discussion of each topic. Two-hundred and fifty-two surveys were available, of which 139 passed the inclusion criteria. The mean number of questions per survey was 4. The mean number of respondents per survey was 63. Summaries were made for the following topics: simulation, treatment planning, electron treatments, linac commissioning and quality assurance, setup and treatment verification, IMRT and VMAT treatments, SRS/SBRT, breast treatments, prostate treatments, brachytherapy, TBI, facial lesion treatments, clinical workflow, and after-hours/emergent treatments. We have provided a coherent overview of medical physics practice according to surveys conducted over the last 5 yr, which will be instructive for medical physicists.


Assuntos
Braquiterapia/normas , Física Médica , Neoplasias/radioterapia , Padrões de Prática Médica/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Fluxo de Trabalho , Braquiterapia/métodos , Humanos , Neoplasias/diagnóstico por imagem , Aceleradores de Partículas , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Inquéritos e Questionários
17.
Front Oncol ; 8: 294, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30175071

RESUMO

Radiomics leverages existing image datasets to provide non-visible data extraction via image post-processing, with the aim of identifying prognostic, and predictive imaging features at a sub-region of interest level. However, the application of radiomics is hampered by several challenges such as lack of image acquisition/analysis method standardization, impeding generalizability. As of yet, radiomics remains intriguing, but not clinically validated. We aimed to test the feasibility of a non-custom-constructed platform for disseminating existing large, standardized databases across institutions for promoting radiomics studies. Hence, University of Texas MD Anderson Cancer Center organized two public radiomics challenges in head and neck radiation oncology domain. This was done in conjunction with MICCAI 2016 satellite symposium using Kaggle-in-Class, a machine-learning and predictive analytics platform. We drew on clinical data matched to radiomics data derived from diagnostic contrast-enhanced computed tomography (CECT) images in a dataset of 315 patients with oropharyngeal cancer. Contestants were tasked to develop models for (i) classifying patients according to their human papillomavirus status, or (ii) predicting local tumor recurrence, following radiotherapy. Data were split into training, and test sets. Seventeen teams from various professional domains participated in one or both of the challenges. This review paper was based on the contestants' feedback; provided by 8 contestants only (47%). Six contestants (75%) incorporated extracted radiomics features into their predictive model building, either alone (n = 5; 62.5%), as was the case with the winner of the "HPV" challenge, or in conjunction with matched clinical attributes (n = 2; 25%). Only 23% of contestants, notably, including the winner of the "local recurrence" challenge, built their model relying solely on clinical data. In addition to the value of the integration of machine learning into clinical decision-making, our experience sheds light on challenges in sharing and directing existing datasets toward clinical applications of radiomics, including hyper-dimensionality of the clinical/imaging data attributes. Our experience may help guide researchers to create a framework for sharing and reuse of already published data that we believe will ultimately accelerate the pace of clinical applications of radiomics; both in challenge or clinical settings.

18.
Comput Med Imaging Graph ; 69: 134-139, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30268005

RESUMO

Radiomics studies have demonstrated the potential use of quantitative image features to improve prognostic stratification of patients with head and neck cancer. Imaging protocol parameters that can affect radiomics feature values have been investigated, but the effects of artifacts caused by intrinsic patient factors have not. Two such artifacts that are common in patients with head and neck cancer are streak artifacts caused by dental fillings and beam-hardening artifacts caused by bone. The purpose of this study was to test the impact of these artifacts and if needed, methods for compensating for these artifacts in head and neck radiomics studies. The robustness of feature values was tested by removing slices of the gross tumor volume (GTV) on computed tomography images from 30 patients with head and neck cancer; these images did not have streak artifacts or had artifacts far from the GTV. The range of each feature value over a percentage of the GTV was compared to the inter-patient variability at full volume. To determine the effects of beam-hardening artifacts, we scanned a phantom with 5 cartridges of different materials encased in polystyrene buildup. A cylindrical hole through the cartridges contained either a rod of polylactic acid to simulate water or a rod of polyvinyl chloride to simulate bone. A region of interest was drawn in each cartridge flush with the rod. Most features were robust with up to 50% of the original GTV removed. Most feature values did not significantly differ when measured with the polylactic acid rod or the polyvinyl chloride rod. Of those that did, the size of the difference did not exceed the inter-patient standard deviation in most cases. We conclude that simply removing slices affected by streak artifacts can enable these scans to be included in radiomics studies and that contours of structures can abut bone without being affected by beam hardening if needed.


Assuntos
Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Adulto , Idoso , Algoritmos , Artefatos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas
19.
Sci Rep ; 8(1): 13047, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158540

RESUMO

Radiomics has shown promise in improving models for predicting patient outcomes. However, to maximize the information gain of the radiomics features, especially in larger patient cohorts, the variability in radiomics features owing to differences between scanners and scanning protocols must be accounted for. To this aim, the imaging variability of radiomics feature values was evaluated on 100 computed tomography scanners at 35 clinics by imaging a radiomics phantom using a controlled protocol and the commonly used chest and head protocols of the local clinic. We used a linear mixed-effects model to determine the degree to which the manufacturer and individual scanners contribute to the overall variability. Using a controlled protocol reduced the overall variability by 57% and 52% compared to the local chest and head protocols respectively. The controlled protocol also reduced the relative contribution of the manufacturer to the total variability. For almost all variabilities (manufacturer, scanner, and residual with different preprocesssing), the controlled protocol scans had a significantly smaller variability than the local protocol scans did. For most radiomics features, the imaging variability was small relative to the inter-patient feature variability in non-small cell lung cancer and head and neck squamous cell carcinoma patient cohorts. From this study, we conclude that using controlled scans can reduce the variability in radiomics features, and our results demonstrate the importance of using controlled protocols in prospective radiomics studies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma de Células Escamosas/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/normas , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/instrumentação
20.
Med Phys ; 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30007075

RESUMO

PURPOSE: Magnetic resonance imaging (MRI) provides noninvasive evaluation of patient's anatomy without using ionizing radiation. Due to this and the high soft-tissue contrast, MRI use has increased and has potential for use in longitudinal studies where changes in patients' anatomy or tumors at different time points are compared. Deformable image registration can be useful for these studies. Here, we describe two datasets that can be used to evaluate the registration accuracy of systems for MR images, as it cannot be assumed to be the same as that measured on CT images. ACQUISITION AND VALIDATION METHODS: Two sets of images were created to test registration accuracy. (a) A porcine phantom was created by placing ten 0.35-mm gold markers into porcine meat. The porcine phantom was immobilized in a plastic container with movable dividers. T1-weighted, T2-weighted, and CT images were acquired with the porcine phantom compressed in four different ways. The markers were not visible on the MR images, due to the selected voxel size, so they did not interfere with the measured registration accuracy, while the markers were visible on the CT images and were used to identify the known deformation between positions. (b) Synthetic images were created using 28 head and neck squamous cell carcinoma patients who had MR scans pre-, mid-, and postradiotherapy treatment. An inter- and intrapatient variation model was created using these patient scans. Four synthetic pretreatment images were created using the interpatient model, and four synthetic post-treatment images were created for each of the pretreatment images using the intrapatient model. DATA FORMAT AND USAGE NOTES: The T1-weighted, T2-weighted, and CT scans of the porcine phantom in the four positions are provided. Four T1-weighted synthetic pretreatment images each with four synthetic post-treatment images, and four T2-weighted synthetic pretreatment images each with four synthetic post-treatment images are provided. Additionally, the applied deformation vector fields to generate the synthetic post-treatment images are provided. The data are available on TCIA under the collection MRI-DIR. POTENTIAL APPLICATIONS: The proposed database provides two sets of images (one acquired and one computer generated) for use in evaluating deformable image registration accuracy. T1- and T2-weighted images are available for each technique as the different image contrast in the two types of images may impact the registration accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA