Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 36(9): e22471, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35959867

RESUMO

Autosomal dominant osteopetrosis type II (ADO2) is a heritable bone disease of impaired osteoclastic bone resorption caused by missense mutations in the chloride channel 7 (CLCN7) gene. Clinical features of ADO2 include fractures, osteomyelitis of jaw, vision loss, and in severe cases, bone marrow failure. Currently, there is no effective therapy for ADO2, and patients usually receive symptomatic treatments. Theoretically, bone marrow transplantation (BMT), which is commonly used in recessive osteopetrosis, could be used to treat ADO2, although the frequency of complications related to BMT is quite high. We created an ADO2 knock-in (p.G213R mutation) mouse model on the 129 genetic background, and their phenotypes mimic the human disease of ADO2. To test whether BMT could restore osteoclast function and rescue the bone phenotypes in ADO2 mice, we transplanted bone marrow cells from 6-8 weeks old male WT donor mice into recipient female ADO2 mice. Also, to determine whether age at the time of transplant may play a role in transplant success, we performed BMT in young (12-week-old) and old (9-month-old) ADO2 mice. Our data indicate that ADO2 mice transplanted with WT marrow achieved more than 90% engraftment up to 6 months post-transplantation at both young and old ages. The in-vivo DXA data revealed that young ADO2 mice transplanted with WT marrow had significantly lower whole body and spine areal bone mineral density (aBMD) at month 6 post-transplantation compared to the ADO2 control mice. The old ADO2 mice also displayed significantly lower whole body, femur, and spine aBMD at months 4 and 5 post-transplantation compared to the age-matched control mice. The in-vivo micro-CT data showed that ADO2 experimental mice transplanted with WT marrow had significantly lower BV/TV at months 2 and 4 post-transplantation compared to the ADO2 control mice at a young age. In contrast, ADO2 control and experimental mice displayed similar BV/TV values for all post-transplantation time points at old age. In addition, serum CTX was significantly higher at month 2 post-transplantation in both young and old ADO2 experimental mice compared to the ADO2 control mice. Serum P1NP levels in young ADO2 experimental mice were significantly higher at baseline and month 2 post-transplantation compared to the ADO2 control mice. These data suggest that BMT may provide, at least, some beneficial effect at both young and adult ages.


Assuntos
Reabsorção Óssea , Osteopetrose , Animais , Biomarcadores , Transplante de Medula Óssea , Canais de Cloreto/genética , Feminino , Humanos , Lactente , Masculino , Camundongos , Osteoclastos , Osteopetrose/genética , Osteopetrose/terapia
2.
JBMR Plus ; 3(4): e10084, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31044183

RESUMO

Glucocorticoids (GC) are commonly used for the treatment of a wide variety of autoimmune, pulmonary, gastrointestinal, and malignancy conditions. One of the devastating side effects of GC use is osteoporotic fractures, particularly in the spine and hip. Bisphosphonates (BP) are the most commonly prescribed pharmacological agents for the prevention and treatment of GC-induced osteoporosis (GIO). However, GIO is marked by reduced bone formation and BP serves mainly to decrease bone resorption. The WNT signaling pathway plays a major role in bone and mineral homeostasis. Previously, we demonstrated that overexpression of WNT16 in mice led to higher bone mineral density and improved bone microarchitecture and strength. We hypothesized that WNT16 overexpression would prevent bone loss due to glucocorticoid treatment in mice. To test our hypothesis, we treated adult wild-type and WNT16-transgenic mice with vehicle and GC (prednisolone; 2.1 mg/kg body weight) via slow-release pellets for 28 days. We measured bone mass and microarchitecture by dual-energy X-ray absorptiometry (DXA) and micro-CT, and performed gene expression and serum biochemical analysis. We found that GC treatment compared with the vehicle significantly decreased femoral areal bone mineral density (aBMD), bone mineral content (BMC), and cortical bone area and thickness in both wild-type and transgenic female mice. In contrast, the trabecular bone parameters at distal femur were not significantly changed by GC treatment in male and female mice for both genotypes. Further, we observed significantly lower level of serum P1NP and a tendency of higher level of serum TRAP in wild-type and transgenic mice due to GC treatment in both sexes. Gene expression analysis showed lower mRNA levels of Wnt16, Opg, and Opg/Rankl ratio in GC-treated female mice for both genotypes compared with the sex-matched vehicle-treated mice. These data suggest that although WNT16 overexpression resulted in higher baseline bone mineral density and bone volume per trabecular volume (BV/TV) in the transgenic mice, this was insufficient to prevent bone loss in mice due to glucocorticoid treatment.

3.
Endocrinology ; 158(3): 470-476, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28005411

RESUMO

Mutations in the dentin matrix protein 1 (DMP1) gene cause autosomal recessive hypophosphatemic rickets (ARHR). Hypophosphatemia in ARHR results from increased circulating levels of the phosphaturic hormone, fibroblast growth factor 23 (FGF23). Similarly, elevated FGF23, caused by mutations in the PHEX gene, is responsible for the hypophosphatemia in X-linked hypophosphatemic rickets (XLH). Previously, we demonstrated that a Phex mutation in mice creates a lower set point for extracellular phosphate, where an increment in phosphorus further stimulates Fgf23 production to maintain low serum phosphorus levels. To test the presence of the similar set point defect in ARHR, we generated 4- and 12-week-old Dmp1/Galnt3 double knockout mice and controls, including Dmp1 knockout mice (a murine model of ARHR), Galnt3 knockout mice (a murine model of familial tumoral calcinosis), and phenotypically normal double heterozygous mice. Galnt3 knockout mice had increased proteolytic cleavage of Fgf23, leading to low circulating intact Fgf23 levels with consequent hyperphosphatemia. In contrast, Dmp1 knockout mice had little Fgf23 cleavage and increased femoral Fgf23 expression, resulting in hypophosphatemia and low femoral bone mineral density (BMD). However, introduction of the Galnt3 null allele to Dmp1 knockout mice resulted in a significant increase in serum phosphorus and normalization of BMD. This increased serum phosphorus was accompanied by markedly elevated Fgf23 expression and circulating Fgf23 levels, an attempt to reduce serum phosphorus in the face of improving phosphorus levels. These data indicate that a Dmp1 mutation creates a lower set point for extracellular phosphate and maintains it through the regulation of Fgf23 cleavage and expression.


Assuntos
Líquido Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Raquitismo Hipofosfatêmico Familiar/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fosfatos/metabolismo , Animais , Densidade Óssea , Raquitismo Hipofosfatêmico Familiar/sangue , Feminino , Fêmur/crescimento & desenvolvimento , Fator de Crescimento de Fibroblastos 23 , Masculino , Camundongos , Camundongos Knockout , Mutação
4.
Endocrinology ; 157(2): 722-36, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26584014

RESUMO

Previous genome-wide association studies have identified common variants in genes associated with bone mineral density (BMD) and risk of fracture. Recently, we identified single nucleotide polymorphisms (SNPs) in Wingless-type mouse mammary tumor virus integration site (WNT)16 that were associated with peak BMD in premenopausal women. To further identify the role of Wnt16 in bone mass regulation, we created transgenic (TG) mice overexpressing human WNT16 in osteoblasts. We compared bone phenotypes, serum biochemistry, gene expression, and dynamic bone histomorphometry between TG and wild-type (WT) mice. Compared with WT mice, WNT16-TG mice exhibited significantly higher whole-body areal BMD and bone mineral content (BMC) at 6 and 12 weeks of age in both male and female. Microcomputer tomography analysis of trabecular bone at distal femur revealed 3-fold (male) and 14-fold (female) higher bone volume/tissue volume (BV/TV), and significantly higher trabecular number and trabecular thickness but lower trabecular separation in TG mice compared with WT littermates in both sexes. The cortical bone at femur midshaft also displayed significantly greater bone area/total area and cortical thickness in the TG mice in both sexes. Serum biochemistry analysis showed that male TG mice had higher serum alkaline phosphatase, osteocalcin, osteoprotegerin (OPG), OPG to receptor activator of NF-kB ligand (tumor necrosis family ligand superfamily, number 11; RANKL) ratio as compared with WT mice. Also, lower carboxy-terminal collagen cross-link (CTX) to tartrate-resistant acid phosphatase 5, isoform b (TRAPc5b) ratio was observed in TG mice compared with WT littermates in both male and female. Histomorphometry data demonstrated that both male and female TG mice had significantly higher cortical and trabecular mineralizing surface/bone surface and bone formation rate compared with sex-matched WT mice. Gene expression analysis demonstrated higher expression of Alp, OC, Opg, and Opg to Rankl ratio in bone tissue in the TG mice compared with WT littermates. Our data indicate that WNT16 is critical for positive regulation of both cortical and trabecular bone mass and structure and that this molecule might be targeted for therapeutic interventions to treat osteoporosis.


Assuntos
Densidade Óssea/genética , Fêmur/diagnóstico por imagem , Osteoblastos/metabolismo , Osteogênese/genética , RNA Mensageiro/metabolismo , Proteínas Wnt/genética , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Osso e Ossos/diagnóstico por imagem , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Feminino , Fêmur/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Osteocalcina/genética , Osteocalcina/metabolismo , Osteoporose , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fosfatase Ácida Resistente a Tartarato , Via de Sinalização Wnt , Microtomografia por Raio-X
5.
Am J Pathol ; 185(11): 3090-101, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26348575

RESUMO

The hypoxia-inducible factor (Hif)-1α (Hif-1α) and Hif-2α (Epas1) have a critical role in both normal development and cancer. von Hippel Lindau (Vhl) protein, encoded by a tumor suppressor gene, is an E3 ubiquitin ligase that targets Hif-1α and Epas1 to the proteasome for degradation. To better understand the role of Vhl in the biology of mesenchymal cells, we analyzed mutant mice lacking Vhl in mesenchymal progenitors that give rise to the soft tissues that form and surround synovial joints. Loss of Vhl in mesenchymal progenitors of the limb bud caused severe fibrosis of the synovial joints and formation of aggressive masses with histologic features of mesenchymal tumors. Hif-1α and its downstream target connective tissue growth factor were necessary for the development of these tumors, which conversely still developed in the absence of Epas1, but at lower frequency. Human tumors of the soft tissue are a very complex and heterogeneous group of neoplasias. Our novel findings in genetically altered mice suggest that activation of the HIF signaling pathway could be an important pathogenetic event in the development and progression of at least a subset of these tumors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fibrose/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transdução de Sinais , Neoplasias de Tecidos Moles/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fibrose/metabolismo , Fibrose/prevenção & controle , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias de Tecidos Moles/metabolismo , Neoplasias de Tecidos Moles/prevenção & controle , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
6.
J Cell Physiol ; 230(3): 578-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25160801

RESUMO

Recent studies suggest that megakaryocytes (MKs) may play a significant role in skeletal homeostasis, as evident by the occurrence of osteosclerosis in multiple MK related diseases (Lennert et al., 1975; Thiele et al., 1999; Chagraoui et al., 2006). We previously reported a novel interaction whereby MKs enhanced proliferation of osteoblast lineage/osteoprogenitor cells (OBs) by a mechanism requiring direct cell-cell contact. However, the signal transduction pathways and the downstream effector molecules involved in this process have not been characterized. Here we show that MKs contact with OBs, via beta1 integrin, activate the p38/MAPKAPK2/p90RSK kinase cascade in the bone cells, which causes Mdm2 to neutralizes p53/Rb-mediated check point and allows progression through the G1/S. Interestingly, activation of MAPK (ERK1/2) and AKT, collateral pathways that regulate the cell cycle, remained unchanged with MK stimulation of OBs. The MK-to-OB signaling ultimately results in significant increases in the expression of c-fos and cyclin A, necessary for sustaining the OB proliferation. Overall, our findings show that OBs respond to the presence of MKs, in part, via an integrin-mediated signaling mechanism, activating a novel response axis that de-represses cell cycle activity. Understanding the mechanisms by which MKs enhance OB proliferation will facilitate the development of novel anabolic therapies to treat bone loss associated with osteoporosis and other bone-related diseases.


Assuntos
Diferenciação Celular/genética , Megacariócitos/citologia , Osteoblastos/citologia , Transdução de Sinais/genética , Ciclo Celular/genética , Linhagem da Célula , Proliferação de Células/genética , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases/genética , Megacariócitos/metabolismo , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
7.
Dev Biol ; 393(1): 124-36, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24972088

RESUMO

Adaptation to low oxygen tension (hypoxia) is a critical event during development. The transcription factors Hypoxia Inducible Factor-1α (HIF-1α) and HIF-2α are essential mediators of the homeostatic responses that allow hypoxic cells to survive and differentiate. Von Hippel-Lindau protein (VHL) is the E3 ubiquitin ligase that targets HIFs to the proteasome for degradation in normoxia. We have previously demonstrated that the transcription factor HIF-1α is essential for survival and differentiation of growth plate chondrocytes, whereas HIF-2α is not necessary for fetal growth plate development. We have also shown that VHL is important for endochondral bone development, since loss of VHL in chondrocytes causes severe dwarfism. In this study, in order to expand our understanding of the role of VHL in chondrogenesis, we conditionally deleted VHL in mesenchymal progenitors of the limb bud, i.e. in cells not yet committed to the chondrocyte lineage. Deficiency of VHL in limb bud mesenchyme does not alter the timely differentiation of mesenchymal cells into chondrocytes. However, it causes structural collapse of the cartilaginous growth plate as a result of impaired proliferation, delayed terminal differentiation, and ectopic death of chondrocytes. This phenotype is associated to delayed replacement of cartilage by bone. Notably, loss of HIF-2α fully rescues the late formation of the bone marrow cavity in VHL mutant mice, though it does not affect any other detectable abnormality of the VHL mutant growth plates. Our findings demonstrate that VHL regulates bone morphogenesis as its loss considerably alters size, shape and overall development of the skeletal elements.


Assuntos
Células-Tronco Mesenquimais/citologia , Osteogênese/genética , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Condrogênese/genética , Condrogênese/fisiologia , Lâmina de Crescimento/embriologia , Lâmina de Crescimento/crescimento & desenvolvimento , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Botões de Extremidades/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Supressora de Tumor Von Hippel-Lindau/genética
8.
J Bone Miner Res ; 28(6): 1434-45, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23362087

RESUMO

Preclinical and clinical evidence from megakaryocyte (MK)-related diseases suggests that MKs play a significant role in maintaining bone homeostasis. Findings from our laboratories reveal that MKs significantly increase osteoblast (OB) number through direct MK-OB contact and the activation of integrins. We, therefore, examined the role of Pyk2, a tyrosine kinase known to be regulated downstream of integrins, in the MK-mediated enhancement of OBs. When OBs were co-cultured with MKs, total Pyk2 levels in OBs were significantly enhanced primarily because of increased Pyk2 gene transcription. Additionally, p53 and Mdm2 were both decreased in OBs upon MK stimulation, which would be permissive of cell cycle entry. We then demonstrated that OB number was markedly reduced when Pyk2-/- OBs, as opposed to wild-type (WT) OBs, were co-cultured with MKs. We also determined that MKs inhibit OB differentiation in the presence and absence of Pyk2 expression. Finally, given that MK-replete spleen cells from GATA-1-deficient mice can robustly stimulate OB proliferation and bone formation in WT mice, we adoptively transferred spleen cells from these mice into Pyk2-/- recipient mice. Importantly, GATA-1-deficient spleen cells failed to stimulate an increase in bone formation in Pyk2-/- mice, suggesting in vivo the important role of Pyk2 in the MK-induced increase in bone volume. Further understanding of the signaling pathways involved in the MK-mediated enhancement of OB number and bone formation will facilitate the development of novel anabolic therapies to treat bone loss diseases.


Assuntos
Diferenciação Celular/fisiologia , Quinase 2 de Adesão Focal/metabolismo , Megacariócitos/enzimologia , Osteoblastos/enzimologia , Osteogênese/fisiologia , Animais , Células Cultivadas , Técnicas de Cocultura , Quinase 2 de Adesão Focal/genética , Megacariócitos/citologia , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
J Biol Chem ; 287(44): 37134-44, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22930750

RESUMO

Hypoxia-inducible factors (HIFs) are the master regulators of hypoxia-responsive genes. They play a critical role in the survival, development, and differentiation of chondrocytes in the avascular hypoxic fetal growth plate, which is rich in extracellular matrix (ECM) and in its main component, collagens. Several genes involved in the synthesis, maintenance, and degradation of ECM are regulated by HIFs. Collagen prolyl 4-hydroxylases (C-P4Hs) are key enzymes in collagen synthesis because the resulting 4-hydroxyprolines are necessary for the stability of all collagen molecules. The vertebrate C-P4Hs are α(2)ß(2) tetramers with three isoforms of the catalytic α subunit, yielding C-P4Hs of types I-III. C-P4H-I is the main form in most cells, but C-P4H-II is the major form in chondrocytes. We postulated here that post-translational modification of collagens, particularly 4-hydroxylation of proline residues, could be one of the modalities by which HIF regulates the adaptive responses of chondrocytes in fetal growth plates. To address this hypothesis, we used primary epiphyseal growth plate chondrocytes isolated from newborn mice with conditionally inactivated genes for HIF-1α, HIF-2α, or the von Hippel-Lindau protein. The data obtained showed that C-P4H α(I) and α(II) mRNA levels were increased in hypoxic chondrocytes in a manner dependent on HIF-1 but not on HIF-2. Furthermore, the increases in the C-P4H mRNA levels were associated with both increased amounts of the C-P4H tetramers and augmented C-P4H activity in hypoxia. The hypoxia inducibility of the C-P4H isoenzymes is thus likely to ensure sufficient C-P4H activity for collagen synthesis occurring in chondrocytes in a hypoxic environment.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Condrócitos/enzimologia , Lâmina de Crescimento/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/genética , Células Cultivadas , Condrócitos/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Hidroxiprolina/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Cultura Primária de Células , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Multimerização Proteica , Transcrição Gênica , Ativação Transcricional , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
10.
J Cell Physiol ; 227(5): 1873-82, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21732358

RESUMO

Intermittent parathyroid hormone (PTH) adds new bone to the osteoporotic skeleton; the transcription factor Nmp4/CIZ represses PTH-induced bone formation in mice and as a consequence is a potential drug target for improving hormone clinical efficacy. To explore the impact of Nmp4/CIZ on osteoblast phenotype, we immortalized bone marrow stromal cells from wildtype (WT) and Nmp4-knockout (KO) mice using murine telomerase reverse transcriptase. Clonal lines were initially chosen based on their positive staining for alkaline phosphatase and capacity for mineralization. Disabling Nmp4/CIZ had no gross impact on osteoblast phenotype development. WT and KO clones exhibited identical sustained growth, reduced population doubling times, extended maintenance of the mature osteoblast phenotype, and competency for differentiating toward the osteoblast and adipocyte lineages. Additional screening of the immortalized cells for PTH-responsiveness permitted further studies with single WT and KO clones. We recently demonstrated that PTH-induced c-fos femoral mRNA expression is enhanced in Nmp4-KO mice and in the present study we observed that hormone stimulated either an equivalent or modestly enhanced increase in c-fos mRNA expression in both primary null and KO clone cells depending on PTH concentration. The null primary osteoblasts and KO clone cells exhibited a transiently enhanced response to bone morphogenetic protein 2 (BMP2). The clones exhibited lower and higher expressions of the PTH receptor (Pthr1) and the BMP2 receptor (Bmpr1a, Alk3), respectively, as compared to primary cells. These immortalized cell lines will provide a valuable tool for disentangling the complex functional roles underlying Nmp4/CIZ regulation of bone anabolism.


Assuntos
Células da Medula Óssea/fisiologia , Proteínas Associadas à Matriz Nuclear/genética , Osteoblastos/fisiologia , Células Estromais/fisiologia , Telomerase/metabolismo , Fatores de Transcrição/genética , Adipócitos/citologia , Adipócitos/fisiologia , Animais , Células da Medula Óssea/citologia , Proteína Morfogenética Óssea 2/farmacologia , Linhagem Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas à Matriz Nuclear/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Fenótipo , Células Estromais/citologia , Telomerase/genética , Fatores de Transcrição/metabolismo
11.
J Cell Physiol ; 226(4): 1044-51, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20857415

RESUMO

Fluid shear stress protects cells from TNF-α-induced apoptosis. Oscillatory fluid shear stress (OFSS) is generally perceived as physiologically relevant biophysical signal for bone cells. Here we identify several cellular mechanisms responsible for mediating the protective effects of OFSS against TNF-α-induced apoptosis in vitro. We found that exposure of MC3T3-E1 osteoblast-like cells to as little as 5 min of OFSS suppressed TNF-α-induced activation of caspase-3, cleavage of PARP and phosphorylation of histone. In contrast, H(2)O(2)-induced apoptosis was not inhibited by OFSS suggesting that OFSS might not be protecting cells from TNF-α-induced apoptosis via stimulation of global pro-survival signaling pathways. In support of this speculation, OFSS inhibition of TNF-α-induced apoptosis was unaffected by inhibitors of several pro-survival signaling pathways including pI3-kinase (LY294002), MAPK/ERK kinase (PD98059 or U0126), intracellular Ca2+ release (U73122), NO production (L-NAME), or protein synthesis (cycloheximide) that were applied to cells during exposure to OFSS and during TNF-α treatment. However, TNF-α-induced phosphorylation and degradation of IκBα was blocked by pre-exposure of cells to OFSS suggesting a more specific effect of OFSS on TNF-α signaling. We therefore focused on the mechanism of OFSS regulation of TNF-receptor 1 (TNFR1) signaling and found that OFSS (1) reduced the amount of receptor on the cell surface, (2) prevented the association of ubiquitinated RIP in TNFR1 complexes with TRADD and TRAF2, and (3) reduced TNF-α-induced IL-8 promoter activity in the nucleus. We conclude that the anti-apoptotic effect of OFSS is not mediated by activation of universal pro-survival signaling pathways. Rather, OFSS inhibits TNF-α-induced pro-apoptotic signaling which can be explained by the down-regulation of TNFR1 on the cell surface and blockade of TNFR1 downstream signaling by OFSS.


Assuntos
Osteoblastos/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Reologia , Transdução de Sinais , Estresse Mecânico , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Endocitose/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas I-kappa B/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa , Óxido Nítrico/biossíntese , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas/efeitos dos fármacos , Reologia/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Ubiquitinação/efeitos dos fármacos
12.
Bone ; 47(1): 74-82, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20353839

RESUMO

When bone is mechanically loaded fluid shear stress (FSS) is generated as a result of the movement of interstitial fluid across the membranes of osteoblasts and osteocytes. This external mechanical loading stimulates changes in the activity of cytoplasmic signaling molecules and alters gene expression in bone cells. This process, referred to as mechanotransduction, is vital for maintaining bone health in vivo by regulating the balance between bone formation and bone resorption. This current study focuses on the role of focal adhesions, sites of integrin-mediated cellular attachment to the extracellular matrix, and their proposed function as mechanosensors in bone cells. We examined the role of a key component of focal adhesions and of mechanotransduction, focal adhesion kinase (FAK) in regulation of FSS- and tumor necrosis factor-alpha (TNF-alpha)-induced activation of nuclear factor-kappa B (NF-kappaB) signaling in osteoblasts. Immortalized FAK(+/+) and FAK(-)(/)(-) osteoblasts were exposed to periods of oscillatory fluid shear stress (OFF) and NF-kappaB activation was analyzed. We determined that FAK is required for OFF-induced nuclear translocation and activation of NF-kappaB in osteoblasts. In addition we found that OFF-induced phosphorylation of the IkappaB kinases (IKKalpha/beta) in both FAK(+/+) and FAK(-/-) osteoblasts, but only FAK(+/+) osteoblasts demonstrated the resulting degradation of NF-kappaB inhibitors IkappaBalpha and IkappaBbeta. OFF did not induce the degradation of IkappaBepsilon or the processing of p105 in either FAK(+/+) and FAK(-/-) osteoblasts. To compare the role of FAK in mediating OFF-induced mechanotransduction to the well characterized activation of NF-kappaB by inflammatory cytokines, we exposed FAK(+/+) and FAK(-/-) osteoblasts to TNF-alpha. Interestingly, FAK was not required for TNF-alpha induced NF-kappaB activation in osteoblasts. In addition we determined that TNF-alpha treatment did not induce the degradation of IkappaBbeta as did OFF. These data indicate a novel relationship between FAK and NF-kappaB activation in osteoblast mechanotransduction and demonstrates that the mechanism of FSS-induced NF-kappaB activation in osteoblasts differs from the well characterized TNF-alpha-induced activation.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Reologia , Estresse Mecânico , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/deficiência , Proteínas I-kappa B/metabolismo , Camundongos , Inibidor de NF-kappaB alfa , Subunidade p50 de NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Reologia/efeitos dos fármacos , Fator de Transcrição RelA/genética
13.
J Cell Physiol ; 223(2): 435-41, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20112285

RESUMO

Cellular mechanotransduction, the process of converting mechanical signals into biochemical responses within cells, is a critical aspect of bone health. While the effects of mechanical loading on bone are well recognized, elucidating the specific molecular pathways involved in the processing of mechanical signals by bone cells represents a challenge and an opportunity to identify therapeutic strategies to combat bone loss. In this study we have for the first time examined the relationship between the nucleocytoplasmic shuttling transcription factor nuclear matrix protein-4/cas interacting zinc finger protein (Nmp4/CIZ) and beta-catenin signaling in response to a physiologic mechanical stimulation (oscillatory fluid shear stress, OFSS) in osteoblasts. Using calvaria-derived osteoblasts from Nmp4-deficient and wild-type mice, we found that the normal translocation of beta-catenin to the nucleus in osteoblasts that is induced by OFSS is enhanced when Nmp4/CIZ is absent. Furthermore, we found that other aspects of OFSS-induced mechanotransduction generally associated with the beta-catenin signaling pathway, including ERK, Akt, and GSK3beta activity, as well as expression of the beta-catenin-responsive protein cyclin D1 are also enhanced in cells lacking Nmp4/CIZ. Finally, we found that in the absence of Nmp4/CIZ, OFSS-induced cytoskeletal reorganization and the formation of focal adhesions between osteoblasts and the extracellular substrate is qualitatively enhanced, suggesting that Nmp4/CIZ may reduce the sensitivity of bone cells to mechanical stimuli. Together these results provide experimental support for the concept that Nmp4/CIZ plays an inhibitory role in the response of bone cells to mechanical stimulation induced by OFSS.


Assuntos
Mecanotransdução Celular/fisiologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Reabsorção Óssea/prevenção & controle , Adesão Celular/fisiologia , Células Cultivadas , Ciclina D1/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Adesões Focais/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Knockout , Proteínas Associadas à Matriz Nuclear/genética , Osteoblastos/citologia , Estimulação Física , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estresse Mecânico , Fatores de Transcrição/genética , beta Catenina/genética
14.
J Bone Miner Res ; 24(3): 411-24, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19016591

RESUMO

Mechanical loading of bone is important for maintenance of bone mass and structural stability of the skeleton. When bone is mechanically loaded, movement of fluid within the spaces surrounding bone cells generates fluid shear stress (FSS) that stimulates osteoblasts, resulting in enhanced anabolic activity. The mechanisms by which osteoblasts convert the external stimulation of FSS into biochemical changes, a process known as mechanotransduction, remain poorly understood. Focal adhesions are prime candidates for transducing external stimuli. Focal adhesion kinase (FAK), a nonreceptor tyrosine kinase found in focal adhesions, may play a key role in mechanotransduction, although its function has not been directly examined in osteoblasts. We examined the role of FAK in osteoblast mechanotransduction using short interfering RNA (siRNA), overexpression of a dominant negative FAK, and FAK(-/-) osteoblasts to disrupt FAK function in calvarial osteoblasts. Osteoblasts were subjected to varying periods oscillatory fluid flow (OFF) from 5 min to 4 h, and several physiologically important readouts of mechanotransduction were analyzed including: extracellular signal-related kinase 1/2 phosphorylation, upregulation of c-fos, cyclooxygenase-2, and osteopontin, and release of prostaglandin E(2). Osteoblasts with disrupted FAK signaling exhibited severely impaired mechanical responses in all endpoints examined. These data indicate the importance of FAK for both short and long periods of FSS-induced mechanotransduction in osteoblasts.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Mecanotransdução Celular , Osteoblastos/citologia , Osteoblastos/enzimologia , Estresse Mecânico , Animais , Ciclo-Oxigenase 2/biossíntese , Dinoprostona/metabolismo , Ativação Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/deficiência , Mecanotransdução Celular/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteopontina/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Reologia , Fatores de Tempo , Transfecção , Regulação para Cima/efeitos dos fármacos
15.
J Cell Biochem ; 102(5): 1202-13, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17455210

RESUMO

The expression of matrix metalloproteinase-13 (MMP-13), involved in bone turnover, is elevated in stretched MC3T3-E1 osteoblast-like cells. Strain-mediated forces impact bone remodeling due in large part to the movement of fluid through the canalicular-lacunar network. The resulting fluid shear stress (FSS) over the surface membranes of bone cells initiates bone remodeling. Although the nuclear events mediating putative FSS-induced changes in osteoblast MMP-13 transcription are unknown, previous studies with bone cells suggest an overlap between osteoblast FSS- and PTH-induced signal response pathways. MMP-13 PTH response is regulated by a 110 bp 5' regulatory region, conserved across the mouse, rat, and human genes, that supports the binding of numerous transcription factors including Runx2, c-fos/c-jun, Ets-1, and nuclear matrix protein 4/cas interacting zinc finger protein (Nmp4/CIZ) a nucleocytoplasmic shuttling trans-acting protein that attenuates PTH-driven transcription. Nmp4/CIZ also binds p130(cas), an adaptor protein implicated in mechanotransduction. Here we sought to determine whether Nmp4/CIZ contributes to FSS-induced changes in MMP-13 transcription. FSS (12 dynes/cm(2), 3-5 h) increased MMP-13 promoter-reporter activity approximately two-fold in MC3T3-E1 osteoblast-like cells attended by a comparable increase in mRNA expression. This was accompanied by a decrease in Nmp4/CIZ binding to its cis-element within the PTH response region, the mutation of which abrogated the MMP-13 response to FSS. Interestingly, FSS enhanced Nmp4/CIZ promoter activity and induced p130(cas) nuclear translocation. We conclude that the PTH regulatory region of MMP-13 also contributes to FSS response and that Nmp4/CIZ plays similar but distinct roles in mediating hormone- and FSS-driven induction of MMP-13 in bone cells.


Assuntos
Metaloproteinase 13 da Matriz/biossíntese , Proteínas Associadas à Matriz Nuclear/metabolismo , Osteoblastos/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Animais , Técnicas de Cultura de Células , Células Cultivadas , Proteína Substrato Associada a Crk/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Genes Reporter , Luciferases/metabolismo , Metaloproteinase 13 da Matriz/genética , Mecanotransdução Celular , Camundongos , Proteínas Associadas à Matriz Nuclear/genética , Osteoblastos/citologia , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo , Estresse Mecânico , Fatores de Transcrição/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA