Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628220

RESUMO

Starch-coated magnetic iron oxide nanoparticles have been synthesized by a simple, fast, and cost-effective co-precipitation method with cornstarch as a stabilizing agent. The structural and magnetic characteristics of the synthesized material have been studied by transmission electron microscopy, Mössbauer spectroscopy, and vibrating sample magnetometry. The nature of bonds between ferrihydrite nanoparticles and a starch shell has been examined by Fourier transform infrared spectroscopy. The data on the magnetic response of the prepared composite particles have been obtained by magnetic measurements. The determined magnetic characteristics make the synthesized material a good candidate for use in magnetic separation. Starch-coated magnetic iron oxide nanoparticles have been tested as an affinity sorbent for one-step purification of several recombinant proteins (cardiac troponin I, survivin, and melanoma inhibitory activity protein) bearing the maltose-binding protein as an auxiliary fragment. It has been shown that, due to the highly specific binding of this fragment to the starch shell, the target fusion protein is selectively immobilized on magnetic nanoparticles and eluted with the maltose solution. The excellent efficiency of column-free purification, high binding capacity of the sorbent (100-500 µg of a recombinant protein per milligram of starch-coated magnetic iron oxide nanoparticles), and reusability of the obtained material have been demonstrated.


Assuntos
Nanopartículas , Amido , Nanopartículas Magnéticas de Óxido de Ferro , Magnetismo , Nanopartículas/química , Proteínas Recombinantes/genética , Amido/química
2.
Chem Soc Rev ; 43(17): 6405-38, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-24901032

RESUMO

Fast, reliable and sensitive methods for nucleic acid detection are of growing practical interest with respect to molecular diagnostics of cancer, infectious and genetic diseases. Currently, PCR-based and other target amplification strategies are most extensively used in practice. At the same time, such assays have limitations that can be overcome by alternative approaches. There is a recent explosion in the design of methods that amplify the signal produced by a nucleic acid target, without changing its copy number. This review aims at systematization and critical analysis of the enzyme-assisted target recycling (EATR) signal amplification technique. The approach uses nucleases to recognize and cleave the probe-target complex. Cleavage reactions produce a detectable signal. The advantages of such techniques are potentially low sensitivity to contamination and lack of the requirement of a thermal cycler. Nucleases used for EATR include sequence-dependent restriction or nicking endonucleases or sequence independent exonuclease III, lambda exonuclease, RNase H, RNase HII, AP endonuclease, duplex-specific nuclease, DNase I, or T7 exonuclease. EATR-based assays are potentially useful for point-of-care diagnostics, single nucleotide polymorphisms genotyping and microRNA analysis. Specificity, limit of detection and the potential impact of EATR strategies on molecular diagnostics are discussed.


Assuntos
Enzimas de Restrição do DNA/metabolismo , DNA/análise , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA/análise , Sequência de Bases , DNA/química , DNA/genética , DNA/metabolismo , Humanos , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos/química , Sondas de Oligonucleotídeos/genética , RNA/química , RNA/genética , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA