Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem J ; 481(14): 959-980, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38941070

RESUMO

While IκB-kinase-ε (IKKε) induces immunomodulatory genes following viral stimuli, its up-regulation by inflammatory cytokines remains under-explored. Since airway epithelial cells respond to airborne insults and potentiate inflammation, IKKε expression was characterized in pulmonary epithelial cell lines (A549, BEAS-2B) and primary human bronchial epithelial cells grown as submersion or differentiated air-liquid interface cultures. IKKε expression was up-regulated by the pro-inflammatory cytokines, interleukin-1ß (IL-1ß) and tumour necrosis factor-α (TNFα). Thus, mechanistic interrogations in A549 cells were used to demonstrate the NF-κB dependence of cytokine-induced IKKε. Furthermore, chromatin immunoprecipitation in A549 and BEAS-2B cells revealed robust recruitment of the NF-κB subunit, p65, to one 5' and two intronic regions within the IKKε locus (IKBKE). In addition, IL-1ß and TNFα induced strong RNA polymerase 2 recruitment to the 5' region, the first intron, and the transcription start site. Stable transfection of the p65-binding regions into A549 cells revealed IL-1ß- and TNFα-inducible reporter activity that required NF-κB, but was not repressed by glucocorticoid. While critical NF-κB motifs were identified in the 5' and downstream intronic regions, the first intronic region did not contain functional NF-κB motifs. Thus, IL-1ß- and TNFα-induced IKKε expression involves three NF-κB-binding regions, containing multiple functional NF-κB motifs, and potentially other mechanisms of p65 binding through non-classical NF-κB binding motifs. By enhancing IKKε expression, IL-1ß may prime, or potentiate, responses to alternative stimuli, as modelled by IKKε phosphorylation induced by phorbol 12-myristate 13-acetate. However, since IKKε expression was only partially repressed by glucocorticoid, IKKε-dependent responses could contribute to glucocorticoid-resistant disease.


Assuntos
Células Epiteliais , Quinase I-kappa B , Humanos , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células A549 , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelA/genética , Interleucina-1beta/farmacologia , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Pulmão/metabolismo , Pulmão/citologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/citologia , Regulação da Expressão Gênica/efeitos dos fármacos
2.
J Immunol ; 209(9): 1746-1759, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162872

RESUMO

α1-Antitrypsin (AAT), a serine protease inhibitor, is the third most abundant protein in plasma. Although the best-known function of AAT is irreversible inhibition of elastase, AAT is an acute-phase reactant and is increasingly recognized to have a panoply of other functions, including as an anti-inflammatory mediator and a host-protective molecule against various pathogens. Although a canonical receptor for AAT has not been identified, AAT can be internalized into the cytoplasm and is known to affect gene regulation. Because AAT has anti-inflammatory properties, we examined whether AAT binds the cytoplasmic glucocorticoid receptor (GR) in human macrophages. We report the finding that AAT binds to GR using several approaches, including coimmunoprecipitation, mass spectrometry, and microscale thermophoresis. We also performed in silico molecular modeling and found that binding between AAT and GR has a plausible stereochemical basis. The significance of this interaction in macrophages is evinced by AAT inhibition of LPS-induced NF-κB activation and IL-8 production as well as AAT induction of angiopoietin-like 4 protein, which are, in part, dependent on GR. Furthermore, this AAT-GR interaction contributes to a host-protective role against mycobacteria in macrophages. In summary, this study identifies a new mechanism for the gene regulation, anti-inflammatory, and host-defense properties of AAT.


Assuntos
Receptores de Glucocorticoides , alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina , Angiopoietinas/metabolismo , Angiopoietinas/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Elastase Pancreática/metabolismo , Receptores de Glucocorticoides/metabolismo , Inibidores de Serina Proteinase
3.
Physiol Genomics ; 54(10): 389-401, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36062885

RESUMO

Military Deployment to Southwest Asia and Afghanistan and exposure to toxic airborne particulates have been associated with an increased risk of developing respiratory disease, collectively termed deployment-related respiratory diseases (DRRDs). Our knowledge about how particulates mediate respiratory disease is limited, precluding the appropriate recognition or management. Central to this limitation is the lack of understanding of how exposures translate into dysregulated cell identity with dysregulated transcriptional programs. The small airway epithelium is involved in both the pathobiology of DRRD and fine particulate matter deposition. To characterize small airway epithelial cell epigenetic and transcriptional responses to Afghan desert particulate matter (APM) and investigate the functional interactions of transcription factors that mediate these responses, we applied two genomics assays, the assay for transposase accessible chromatin with sequencing (ATAC-seq) and Precision Run-on sequencing (PRO-seq). We identified activity changes in a series of transcriptional pathways as candidate regulators of susceptibility to subsequent insults, including signal-dependent pathways, such as loss of cytochrome P450 or P53/P63, and lineage-determining transcription factors, such as GRHL2 loss or TEAD3 activation. We further demonstrated that TEAD3 activation was unique to APM exposure despite similar inflammatory responses when compared with wood smoke particle exposure and that P53/P63 program loss was uniquely positioned at the intersection of signal-dependent and lineage-determining transcriptional programs. Our results establish the utility of an integrated genomics approach in characterizing responses to exposures and identifying genomic targets for the advanced investigation of the pathogenesis of DRRD.


Assuntos
Células Epiteliais Alveolares , Material Particulado , Fatores de Transcrição , Afeganistão , Células Epiteliais Alveolares/metabolismo , Cromatina/metabolismo , Epigênese Genética , Genômica/métodos , Destacamento Militar , Material Particulado/toxicidade , Doenças Respiratórias/epidemiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transposases/metabolismo , Proteína Supressora de Tumor p53/metabolismo
4.
Am J Respir Crit Care Med ; 206(10): 1259-1270, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35816432

RESUMO

Rationale: Common genetic variants have been associated with idiopathic pulmonary fibrosis (IPF). Objectives: To determine functional relevance of the 10 IPF-associated common genetic variants we previously identified. Methods: We performed expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL) mapping, followed by co-localization of eQTL and mQTL with genetic association signals and functional validation by luciferase reporter assays. Illumina multi-ethnic genotyping arrays, mRNA sequencing, and Illumina 850k methylation arrays were performed on lung tissue of participants with IPF (234 RNA and 345 DNA samples) and non-diseased controls (188 RNA and 202 DNA samples). Measurements and Main Results: Focusing on genetic variants within 10 IPF-associated genetic loci, we identified 27 eQTLs in controls and 24 eQTLs in cases (false-discovery-rate-adjusted P < 0.05). Among these signals, we identified associations of lead variants rs35705950 with expression of MUC5B and rs2076295 with expression of DSP in both cases and controls. mQTL analysis identified CpGs in gene bodies of MUC5B (cg17589883) and DSP (cg08964675) associated with the lead variants in these two loci. We also demonstrated strong co-localization of eQTL/mQTL and genetic signal in MUC5B (rs35705950) and DSP (rs2076295). Functional validation of the mQTL in MUC5B using luciferase reporter assays demonstrates that the CpG resides within a putative internal repressor element. Conclusions: We have established a relationship of the common IPF genetic risk variants rs35705950 and rs2076295 with respective changes in MUC5B and DSP expression and methylation. These results provide additional evidence that both MUC5B and DSP are involved in the etiology of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , DNA , Metilação de DNA/genética , Expressão Gênica , Predisposição Genética para Doença/genética , Fibrose Pulmonar Idiopática/genética , Mucina-5B/genética , Locos de Características Quantitativas/genética , RNA
5.
FASEB J ; 36(5): e22300, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35436029

RESUMO

Resolution of inflammation is an active process that is tightly regulated to achieve repair and tissue homeostasis. In the absence of resolution, persistent inflammation underlies the pathogenesis of chronic lung disease such as chronic obstructive pulmonary disease (COPD) with recurrent exacerbations. Over the course of inflammation, macrophage programming transitions from pro-inflammatory to pro-resolving, which is in part regulated by the nuclear receptor Peroxisome Proliferator-Activated Receptor γ (PPARγ). Our previous work demonstrated an association between Fatty Acid Binding Protein 5 (FABP5) expression and PPARγ activity in peripheral blood mononuclear cells of healthy and COPD patients. However, a role for FABP5 in macrophage programming has not been examined. Here, using a combination of in vitro and in vivo approaches, we demonstrate that FABP5 is necessary for PPARγ activation. In turn, PPARγ acts directly to increase FABP5 expression in primary human alveolar macrophages. We further illustrate that lack of FABP5 expression promotes a pro-inflammatory macrophage programming with increased secretion of pro-inflammatory cytokines and increased chromatin accessibility for pro-inflammatory transcription factors (e.g., NF-κB and MAPK). And finally, real-time cell metabolic analysis using the Seahorse technology shows an inhibition of oxidative phosphorylation in FABP5-deficient macrophages. Taken together, our data indicate that FABP5 and PPARγ reciprocally regulate each other's expression and function, consistent with a novel positive feedback loop between the two factors that mediates macrophage pro-resolving programming. Our studies highlight the importance of defining targets and regulatory mechanisms that control the resolution of inflammation and may serve to inform novel interventional strategies directed towards COPD.


Assuntos
PPAR gama , Doença Pulmonar Obstrutiva Crônica , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , PPAR gama/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo
6.
J Biol Chem ; 298(4): 101747, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189144

RESUMO

While glucocorticoids act via the glucocorticoid receptor (GR; NR3C1) to reduce the expression of many inflammatory genes, repression is not an invariable outcome. Here, we explore synergy occurring between synthetic glucocorticoids (dexamethasone and budesonide) and proinflammatory cytokines (IL1B and TNF) on the expression of the toll-like receptor 2 (TLR2). This effect is observed in epithelial cell lines and both undifferentiated and differentiated primary human bronchial epithelial cells (pHBECs). In A549 cells, IL1B-plus-glucocorticoid-induced TLR2 expression required nuclear factor (NF)-κB and GR. Likewise, in A549 cells, BEAS-2B cells, and pHBECs, chromatin immunoprecipitation identified GR- and NF-κB/p65-binding regions ∼32 kb (R1) and ∼7.3 kb (R2) upstream of the TLR2 gene. Treatment of BEAS-2B cells with TNF or/and dexamethasone followed by global run-on sequencing confirmed transcriptional activity at these regions. Furthermore, cloning R1 or R2 into luciferase reporters revealed transcriptional activation by budesonide or IL1B, respectively, while R1+R2 juxtaposition enabled synergistic activation by IL1B and budesonide. In addition, small-molecule inhibitors and siRNA knockdown showed p38α MAPK to negatively regulate both IL1B-induced TLR2 expression and R1+R2 reporter activity. Finally, agonism of IL1B-plus-dexamethasone-induced TLR2 in A549 cells and pHBECs stimulated NF-κB- and interferon regulatory factor-dependent reporter activity and chemokine release. We conclude that glucocorticoid-plus-cytokine-driven synergy at TLR2 involves GR and NF-κB acting via specific enhancer regions, which combined with the inhibition of p38α MAPK promotes TLR2 expression. Subsequent inflammatory effects that occur following TLR2 agonism may be pertinent in severe neutrophilic asthma or chronic obstructive pulmonary disease, where glucocorticoid-based therapies are less efficacious.


Assuntos
Asma , NF-kappa B , Receptores de Glucocorticoides , Receptor 2 Toll-Like , Proteínas Quinases p38 Ativadas por Mitógeno , Asma/fisiopatologia , Budesonida/farmacologia , Citocinas/metabolismo , Dexametasona/farmacologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Pulmão/citologia , Pulmão/metabolismo , NF-kappa B/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33320836

RESUMO

The G/T transversion rs35705950, located approximately 3 kb upstream of the MUC5B start site, is the cardinal risk factor for idiopathic pulmonary fibrosis (IPF). Here, we investigate the function and chromatin structure of this -3 kb region and provide evidence that it functions as a classically defined enhancer subject to epigenetic programming. We use nascent transcript analysis to show that RNA polymerase II loads within 10 bp of the G/T transversion site, definitively establishing enhancer function for the region. By integrating Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) analysis of fresh and cultured human airway epithelial cells with nuclease sensitivity data, we demonstrate that this region is in accessible chromatin that affects the expression of MUC5B. Through applying paired single-nucleus RNA- and ATAC-seq to frozen tissue from IPF lungs, we extend these findings directly to disease, with results indicating that epigenetic programming of the -3 kb enhancer in IPF occurs in both MUC5B-expressing and nonexpressing lineages. In aggregate, our results indicate that the MUC5B-associated variant rs35705950 resides within an enhancer that is subject to epigenetic remodeling and contributes to pathologic misexpression in IPF.


Assuntos
Fibrose Pulmonar Idiopática/genética , Mucina-5B/genética , Células A549 , Sítios de Ligação/genética , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Mutação com Ganho de Função , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-ets/metabolismo , RNA Polimerase II/metabolismo , Fator de Transcrição STAT3/metabolismo
8.
J Biol Chem ; 296: 100065, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33184061

RESUMO

Ligand-activated glucocorticoid receptor (GR) elicits variable glucocorticoid-modulated transcriptomes in different cell types. However, some genes, including Krüppel-like factor 9 (KLF9), a putative transcriptional repressor, demonstrate conserved responses. We show that glucocorticoids induce KLF9 expression in the human airways in vivo and in differentiated human bronchial epithelial (HBE) cells grown at air-liquid interface (ALI). In A549 and BEAS-2B pulmonary epithelial cells, glucocorticoids induce KLF9 expression with similar kinetics to primary HBE cells in submersion culture. A549 and BEAS-2B ChIP-seq data reveal four common glucocorticoid-induced GR binding sites (GBSs). Two GBSs mapped to the 5'-proximal region relative to KLF9 transcription start site (TSS) and two occurred at distal sites. These were all confirmed in primary HBE cells. Global run-on (GRO) sequencing indicated robust enhancer RNA (eRNA) production from three of these GBSs in BEAS-2B cells. This was confirmed in A549 cells, plus submersion, and ALI culture of HBE cells. Cloning each GBS into luciferase reporters revealed glucocorticoid-induced activity requiring a glucocorticoid response element (GRE) within each distal GBS. While the proximal GBSs drove modest reporter induction by glucocorticoids, this region exhibited basal eRNA production, RNA polymerase II enrichment, and looping to the TSS, plausibly underlying constitutive KLF9 expression. Post glucocorticoid treatment, interactions between distal and proximal GBSs and the TSS correlated with KLF9 induction. CBP/P300 silencing reduced proximal GBS activity, but negligibly affected KLF9 expression. Overall, a model for glucocorticoid-mediated regulation of KLF9 involving multiple GBSs is depicted. This work unequivocally demonstrates that mechanistic insights gained from cell lines can translate to physiologically relevant systems.


Assuntos
Dexametasona/farmacologia , Genômica , Glucocorticoides/farmacologia , Fatores de Transcrição Kruppel-Like/biossíntese , Pulmão/efeitos dos fármacos , Células A549 , Elementos Facilitadores Genéticos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Ligação Proteica , RNA Mensageiro/genética , Receptores de Glucocorticoides/metabolismo , Transcrição Gênica/efeitos dos fármacos
9.
Immun Inflamm Dis ; 8(1): 62-79, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31912662

RESUMO

INTRODUCTION: Corynebacterium tuberculostearicum (C. t.) is a ubiquitous bacterium that colonizes human skin. In contrast to other members of the genus Corynebacterium, such as toxigenic Corynebacterium diphtheriae or the opportunistic pathogen Corynebacterium jeikeium, several studies suggest that C. t. may play a role in skin health and disease. However, the mechanisms underlying these effects remain poorly understood. METHODS: To investigate whether C. t. induces inflammatory pathways in primary human epidermal keratinocytes (HEKs) and human cutaneous squamous carcinoma cells (SCCs), cell culture, reverse transcription-polymerase chain reaction (PCR), enzyme-linked immunosorbent assay, immunofluorescence microscopy, Western blot, chromatin immunoprecipitation-PCR, small interfering RNA knockdown and luciferase reporter expression system were used. RESULTS: Herein, we demonstrate that C. t. upregulates the messenger RNA (mRNA) and protein levels of inflammatory mediators in two human skin cell lines, HEKs and SCCs. We further show activation of the canonical nuclear factor-κB (NF-κB) pathway in response to C. t. infection, including phosphorylation of the inhibitor of κB (IκB), the nuclear translocation of NF-κB subunit (NF-κB-P65 ) and the recruitment of NF-κB-P65 and RNA polymerase to the NF-κB response elements at the promoter region of the inflammatory genes. Lastly, the data confirm that C. t.-induced tumor necrosis factor mRNA expression in HEKs is toll-like receptor 2 (TLR2 ) dependent. CONCLUSION: Our results offer a mechanistic model for C. t.-induced inflammation in human keratinocytes via TLR2 and activation of IκB kinase and downstream signaling through the canonical NF-κB pathway. Relevance to chronic inflammatory diseases of the skin and cutaneous oncology is discussed.


Assuntos
Infecções por Corynebacterium/microbiologia , Inflamação/microbiologia , NF-kappa B/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas/microbiologia , Linhagem Celular , Corynebacterium , Infecções por Corynebacterium/genética , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/patologia , Queratinócitos/microbiologia , NF-kappa B/genética , Fosforilação , RNA Mensageiro/genética , RNA Interferente Pequeno , Transfecção , Fator de Necrose Tumoral alfa/farmacologia
10.
Genome Res ; 29(11): 1753-1765, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31519741

RESUMO

The glucocorticoid receptor (NR3C1, also known as GR) binds to specific DNA sequences and directly induces transcription of anti-inflammatory genes that contribute to cytokine repression, frequently in cooperation with NF-kB. Whether inflammatory repression also occurs through local interactions between GR and inflammatory gene regulatory elements has been controversial. Here, using global run-on sequencing (GRO-seq) in human airway epithelial cells, we show that glucocorticoid signaling represses transcription within 10 min. Many repressed regulatory regions reside within "hyper-ChIPable" genomic regions that are subject to dynamic, yet nonspecific, interactions with some antibodies. When this artifact was accounted for, we determined that transcriptional repression does not require local GR occupancy. Instead, widespread transcriptional induction through canonical GR binding sites is associated with reciprocal repression of distal TNF-regulated enhancers through a chromatin-dependent process, as evidenced by chromatin accessibility and motif displacement analysis. Simultaneously, transcriptional induction of key anti-inflammatory effectors is decoupled from primary repression through cooperation between GR and NF-kB at a subset of regulatory regions. Thus, glucocorticoids exert bimodal restraints on inflammation characterized by rapid primary transcriptional repression without local GR occupancy and secondary anti-inflammatory effects resulting from transcriptional cooperation between GR and NF-kB.


Assuntos
Dexametasona/farmacologia , Inflamação/metabolismo , RNA Mensageiro/genética , Receptores de Glucocorticoides/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Cromatina/metabolismo , Dexametasona/metabolismo , Elementos Facilitadores Genéticos , Células HEK293 , Humanos , NF-kappa B/metabolismo , Transdução de Sinais
11.
JCI Insight ; 52019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30913038

RESUMO

Many lung diseases result from a failure of efficient regeneration of damaged alveolar epithelial cells (AECs) after lung injury. During regeneration, AEC2s proliferate to replace lost cells, after which proliferation halts and some AEC2s transdifferentiate into AEC1s to restore normal alveolar structure and function. Although the mechanisms underlying AEC2 proliferation have been studied, the mechanisms responsible for halting proliferation and inducing transdifferentiation are poorly understood. To identify candidate signaling pathways responsible for halting proliferation and inducing transdifferentiation, we performed single cell RNA sequencing on AEC2s during regeneration in a murine model of lung injury induced by intratracheal LPS. Unsupervised clustering revealed distinct subpopulations of regenerating AEC2s: proliferating, cell cycle arrest, and transdifferentiating. Gene expression analysis of these transitional subpopulations revealed that TGFß signaling was highly upregulated in the cell cycle arrest subpopulation and relatively downregulated in transdifferentiating cells. In cultured AEC2s, TGFß was necessary for cell cycle arrest but impeded transdifferentiation. We conclude that during regeneration after LPS-induced lung injury, TGFß is a critical signal halting AEC2 proliferation but must be inactivated to allow transdifferentiation. This study provides insight into the molecular mechanisms regulating alveolar regeneration and the pathogenesis of diseases resulting from a failure of regeneration.


Assuntos
Células Epiteliais Alveolares/patologia , Lesão Pulmonar/patologia , Regeneração , Fator de Crescimento Transformador beta/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/imunologia , Lesão Pulmonar/imunologia , Masculino , Camundongos , Cultura Primária de Células , RNA-Seq , Ratos , Transdução de Sinais/fisiologia , Análise de Célula Única
12.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L71-L81, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30335498

RESUMO

Corticosteroids (CSs) are commonly used to manage wheezing and asthma in pediatric populations. Although corticosteroids are effective in alleviating airway diseases, some children with more moderate-severe asthma phenotypes show CS resistance and exhibit significant airflow obstruction, persistent inflammation, and more frequent exacerbations. Previous studies have demonstrated that Th1 cytokines, such as TNF-α and IFN-γ, promote CS resistance in adult human airway smooth muscle (ASM). In the present study, using a human fetal ASM cell model, we tested the hypothesis that TNF-α/IFN-γ induces CS resistance. In contrast to TNF-α or IFN-γ alone, the combination of TNF-α/IFN-γ blunted the ability of fluticasone propionate (FP) to reduce expression of the chemokines CCL5 and CXCL10 despite expression of key anti-inflammatory glucocorticoid receptor target genes being largely unaffected by TNF-α/IFN-γ. Expression of the NF-κB subunit p65 and phosphorylation of Stat1 were elevated in cells treated with TNF-α/IFN-γ, an effect that remained in the presence of FP. siRNA knockdown studies demonstrated the effects of TNF-α/IFN-γ on increased p65 are mediated by Stat1, a transcription factor activated by IFN-γ. Expression of TNFAIP3, a negative regulator of NF-κB activity, was not altered by TNF-α/IFN-γ. However, the effects of TNF-α/IFN-γ were partially reduced by overexpression of TNFAIP3 but did not influence p65 expression. Together, these data suggest that IFN-γ augments the effects of TNF-α on chemokines by enhancing expression of key inflammatory pathways in the presence of CS. Interactions between TNF-α- and IFN-γ-mediated pathways may promote inflammation in asthmatic children resistant to CSs.


Assuntos
Corticosteroides/farmacologia , Brônquios/imunologia , Resistência a Medicamentos/efeitos dos fármacos , Fluticasona/farmacologia , Interferon gama/imunologia , Miócitos de Músculo Liso/imunologia , Traqueia/imunologia , Fator de Necrose Tumoral alfa/imunologia , Brônquios/crescimento & desenvolvimento , Criança , Pré-Escolar , Resistência a Medicamentos/imunologia , Feminino , Humanos , Masculino , Células Th1/imunologia , Traqueia/crescimento & desenvolvimento
14.
Am J Respir Cell Mol Biol ; 57(2): 226-237, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28375666

RESUMO

Glucocorticoids exert important therapeutic effects on airway smooth muscle (ASM), yet few direct targets of glucocorticoid signaling in ASM have been definitively identified. Here, we show that the transcription factor, Krüppel-like factor 15 (KLF15), is directly induced by glucocorticoids in primary human ASM, and that KLF15 represses ASM hypertrophy. We integrated transcriptome data from KLF15 overexpression with genome-wide analysis of RNA polymerase (RNAP) II and glucocorticoid receptor (GR) occupancy to identify phospholipase C delta 1 as both a KLF15-regulated gene and a novel repressor of ASM hypertrophy. Our chromatin immunoprecipitation sequencing data also allowed us to establish numerous direct transcriptional targets of GR in ASM. Genes with inducible GR occupancy and putative antiinflammatory properties included IRS2, APPL2, RAMP1, and MFGE8. Surprisingly, we also observed GR occupancy in the absence of supplemental ligand, including robust GR binding peaks within the IL11 and LIF loci. Detection of antibody-GR complexes at these areas was abrogated by dexamethasone treatment in association with reduced RNA polymerase II occupancy, suggesting that noncanonical pathways contribute to cytokine repression by glucocorticoids in ASM. Through defining GR interactions with chromatin on a genome-wide basis in ASM, our data also provide an important resource for future studies of GR in this therapeutically relevant cell type.


Assuntos
Remodelação das Vias Aéreas/genética , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição Kruppel-Like/fisiologia , Músculo Liso/patologia , Proteínas Nucleares/fisiologia , Fosfolipase C delta/fisiologia , Receptores de Glucocorticoides/fisiologia , Sistema Respiratório/citologia , Adenoviridae/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Hipertrofia , Músculo Liso/metabolismo , Fosfolipase C delta/genética , Cultura Primária de Células , RNA Polimerase II/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de RNA , Transcriptoma , Transdução Genética , Fator de Crescimento Transformador beta/farmacologia
15.
Am J Respir Cell Mol Biol ; 57(1): 91-99, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28272906

RESUMO

The gain-of-function mucin 5B (MUC5B) promoter variant, rs35705950, confers the largest risk, genetic or otherwise, for the development of idiopathic pulmonary fibrosis; however, the mechanisms underlying the regulation of MUC5B expression have yet to be elucidated. Here, we identify a critical regulatory domain that contains the MUC5B promoter variant and has a highly conserved forkhead box protein A2 (FOXA2) binding motif. This region is differentially methylated in association with idiopathic pulmonary fibrosis, MUC5B expression, and rs35705950. In addition, we show that this locus binds FOXA2 dynamically, and that binding of FOXA2 is necessary for enhanced expression of MUC5B. In aggregate, our findings identify novel targets to regulate the expression of MUC5B.


Assuntos
Fibrose Pulmonar Idiopática/genética , Mucina-5B/genética , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , Ilhas de CpG/genética , Metilação de DNA/genética , Técnicas de Silenciamento de Genes , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Mucina-5B/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas , Ligação Proteica/genética , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/metabolismo
16.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L358-L370, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039105

RESUMO

Glucocorticoids, or corticosteroids, are effective treatments for many chronic inflammatory diseases, and in mild/moderate asthma, long-acting ß2-adrenoceptor agonists (LABAs) enhance the efficacy of inhaled corticosteroids (ICSs) more than increasing the ICS dose. In human bronchial epithelial, BEAS-2B, cells, expression of TNFα-induced protein-3 (TNFAIP3), or A20, a dual-ubiquitin ligase that provides feedback inhibition of NF-κB, was induced by budesonide, an ICS, and formoterol, a LABA, and was further enhanced by budesonide-formoterol combination. The proinflammatory cytokine TNF induced TNFAIP3 and TNF expression. Whereas subsequent budesonide treatment enhanced TNF-induced TNFAIP3 and reduced TNF expression, formoterol amplified these differential effects. In primary human airway smooth muscle cells, TNFAIP3 expression was induced by TNF. This was largely unaffected by budesonide but was acutely enhanced by budesonide-formoterol combination. In BEAS-2B cells, TNF recruited RELA, the main NF-κB transactivating subunit, to a 3' region of the TNF gene. RELA binding was reduced by budesonide, was further reduced by formoterol cotreatment, and was associated with reduced RNA polymerase II recruitment to the TNF gene. This is consistent with reduced TNF expression. TNFAIP3 knockdown enhanced TNF expression in the presence of TNF, TNF plus budesonide, and TNF plus budesonide-formoterol combination and confirms feedback inhibition. A luciferase reporter containing the TNF 3' RELA binding region recapitulated TNF inducibility and was inhibited by an IκB kinase inhibitor and TNFAIP3 overexpression. Repression of reporter activity by budesonide was increased by formoterol and involved TNFAIP3. Thus LABAs may improve the anti-inflammatory properties of ICSs by augmenting TNFAIP3 expression to negatively regulate NF-κB.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , NF-kappa B/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Sequência de Bases , Sítios de Ligação , Budesonida/farmacologia , Linhagem Celular , Imunoprecipitação da Cromatina , Fumarato de Formoterol/farmacologia , Inativação Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/metabolismo , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia
17.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L421-32, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27371733

RESUMO

Airway smooth muscle is a major target tissue for glucocorticoid (GC)-based asthma therapies, however, molecular mechanisms through which the GC receptor (GR) exerts therapeutic effects in this key airway cell type have not been fully elucidated. We previously identified the nuclear factor-κB (NF-κB) inhibitor, A20 (TNFAIP3), as a mediator of cytokine repression by glucocorticoids (GCs) in airway epithelial cells and defined cooperative regulation of anti-inflammatory genes by GR and NF-κB as a key mechanistic underpinning of airway epithelial GR function. Here, we expand on these findings to determine whether a similar mechanism is operational in human airway smooth muscle (HASM). Using HASM cells derived from normal and fatal asthma samples as an in vitro model, we demonstrate that GCs spare or augment TNF-mediated induction of A20 (TNFAIP3), TNIP1, and NFKBIA, all implicated in negative feedback control of NF-κB-driven inflammatory processes. We applied chromatin immunoprecipitation and reporter analysis to show that GR and NF-κB directly regulate A20 expression in HASM through cooperative induction of an intronic enhancer. Using overexpression, we show for the first time that A20 and its interacting partner, TNIP1, repress TNF signaling in HASM cells. Moreover, we applied small interfering RNA-based gene knockdown to demonstrate that A20 is required for maximal cytokine repression by GCs in HASM. Taken together, our data suggest that inductive regulation of A20 by GR and NF-κB contributes to cytokine repression in HASM.


Assuntos
Citocinas/biossíntese , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Músculo Liso/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Adolescente , Asma/metabolismo , Sítios de Ligação , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Elementos Facilitadores Genéticos , Feminino , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Liso/efeitos dos fármacos , NF-kappa B/metabolismo , Ligação Proteica , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Transcrição Gênica , Ativação Transcricional , Adulto Jovem
18.
J Biol Chem ; 291(24): 12673-12687, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27076634

RESUMO

Antagonism of pro-inflammatory transcription factors by monomeric glucocorticoid receptor (GR) has long been viewed as central to glucocorticoid (GC) efficacy. However, the mechanisms and targets through which GCs exert therapeutic effects in diseases such as asthma remain incompletely understood. We previously defined a surprising cooperative interaction between GR and NF-κB that enhanced expression of A20 (TNFAIP3), a potent inhibitor of NF-κB. Here we extend this observation to establish that A20 is required for maximal cytokine repression by GCs. To ascertain the global extent of GR and NF-κB cooperation, we determined genome-wide occupancy of GR, the p65 subunit of NF-κB, and RNA polymerase II in airway epithelial cells treated with dexamethasone, TNF, or both using chromatin immunoprecipitation followed by deep sequencing. We found that GR recruits p65 to dimeric GR binding sites across the genome and discovered additional regulatory elements in which GR-p65 cooperation augments gene expression. GR targets regulated by this mechanism include key anti-inflammatory and injury response genes such as SERPINA1, which encodes α1 antitrypsin, and FOXP4, an inhibitor of mucus production. Although dexamethasone treatment reduced RNA polymerase II occupancy of TNF targets such as IL8 and TNFAIP2, we were unable to correlate specific binding sequences for GR or occupancy patterns with repressive effects on transcription. Our results suggest that cooperative anti-inflammatory gene regulation by GR and p65 contributes to GC efficacy, whereas tethering interactions between GR and p65 are not universally required for GC-based gene repression.


Assuntos
Anti-Inflamatórios/farmacologia , Células Epiteliais/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Fator de Transcrição RelA/metabolismo , Western Blotting , Linhagem Celular , Células Cultivadas , Dexametasona/farmacologia , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Ligação Proteica/efeitos dos fármacos , Interferência de RNA , RNA Polimerase II/metabolismo , Receptores de Glucocorticoides/genética , Sistema Respiratório/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição RelA/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
19.
J Biol Chem ; 290(32): 19756-69, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26088140

RESUMO

Combinatorial gene regulation through feed-forward loops (FFLs) can bestow specificity and temporal control to client gene expression; however, characteristics of binding sites that mediate these effects are not established. We previously showed that the glucocorticoid receptor (GR) and KLF15 form coherent FFLs that cooperatively induce targets such as the amino acid-metabolizing enzymes AASS and PRODH and incoherent FFLs exemplified by repression of MT2A by KLF15. Here, we demonstrate that GR and KLF15 physically interact and identify low affinity GR binding sites within glucocorticoid response elements (GREs) for PRODH and AASS that contribute to combinatorial regulation with KLF15. We used deep sequencing and electrophoretic mobility shift assays to derive in vitro GR binding affinities across sequence space. We applied these data to show that AASS GRE activity correlated (r(2) = 0.73) with predicted GR binding affinities across a 50-fold affinity range in transfection assays; however, the slope of the linear relationship more than doubled when KLF15 was expressed. Whereas activity of the MT2A GRE was even more strongly (r(2) = 0.89) correlated with GR binding site affinity, the slope of the linear relationship was sharply reduced by KLF15, consistent with incoherent FFL logic. Thus, GRE architecture and co-regulator expression together determine the functional parameters that relate GR binding site affinity to hormone-induced transcriptional responses. Utilization of specific affinity response functions and GR binding sites by FFLs may contribute to the diversity of gene expression patterns within GR-regulated transcriptomes.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Prolina Oxidase/metabolismo , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta , Sacaropina Desidrogenases/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Sítios de Ligação , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Linhagem Celular , Dexametasona/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fatores de Transcrição Kruppel-Like/química , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Prolina Oxidase/química , Prolina Oxidase/genética , Regiões Promotoras Genéticas , Ligação Proteica , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Sacaropina Desidrogenases/química , Sacaropina Desidrogenases/genética , Transdução de Sinais
20.
Pharmacol Ther ; 145: 85-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25168919

RESUMO

Nuclear receptors (NRs) are widely targeted to treat a range of human diseases. Feed-forward loops are an ancient mechanism through which single cell organisms organize transcriptional programming and modulate gene expression dynamics, but they have not been systematically studied as a regulatory paradigm for NR-mediated transcriptional responses. Here, we provide an overview of the basic properties of feed-forward loops as predicted by mathematical models and validated experimentally in single cell organisms. We review existing evidence implicating feed-forward loops as important in controlling clinically relevant transcriptional responses to estrogens, progestins, and glucocorticoids, among other NR ligands. We propose that feed-forward transcriptional circuits are a major mechanism through which NRs integrate signals, exert temporal control over gene regulation, and compartmentalize client transcriptomes into discrete subunits. Implications for the design and function of novel selective NR ligands are discussed.


Assuntos
Receptores Citoplasmáticos e Nucleares/genética , Animais , Redes Reguladoras de Genes , Humanos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA