Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(9): 2295-2307, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39113611

RESUMO

Phenotypic plasticity is a recognized mechanism driving therapeutic resistance in patients with prostate cancer. Although underlying molecular causations driving phenotypic plasticity have been identified, therapeutic success is yet to be achieved. To identify putative master regulator transcription factors (MR-TF) driving phenotypic plasticity in prostate cancer, this work utilized a multiomic approach using genetically engineered mouse models of prostate cancer combined with patient data to identify MYB proto-oncogene like 2 (MYBL2) as a significantly enriched transcription factor in prostate cancer exhibiting phenotypic plasticity. Genetic inhibition of Mybl2 using independent murine prostate cancer cell lines representing phenotypic plasticity demonstrated Mybl2 loss significantly decreased in vivo growth as well as cell fitness and repressed gene expression signatures involved in pluripotency and stemness. Because MYBL2 is currently not druggable, a MYBL2 gene signature was employed to identify cyclin-dependent kinase-2 (CDK2) as a potential therapeutic target. CDK2 inhibition phenocopied genetic loss of Mybl2 and significantly decreased in vivo tumor growth associated with enrichment of DNA damage. Together, this work demonstrates MYBL2 as an important MR-TF driving phenotypic plasticity in prostate cancer. Furthermore, high MYBL2 activity identifies prostate cancer that would be responsive to CDK2 inhibition. SIGNIFICANCE: Prostate cancers that escape therapy targeting the androgen receptor signaling pathways via phenotypic plasticity are currently untreatable. Our study identifies MYBL2 as a MR-TF in phenotypic plastic prostate cancer and implicates CDK2 inhibition as a novel therapeutic target for this most lethal subtype of prostate cancer.


Assuntos
Quinase 2 Dependente de Ciclina , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Plasticidade Celular , Proliferação de Células , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Proto-Oncogene Mas , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Transativadores/genética , Transativadores/metabolismo , Ubiquitina-Proteína Ligases
2.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352340

RESUMO

Phenotypic plasticity is a recognized mechanism driving therapeutic resistance in prostate cancer (PCa) patients. While underlying molecular causations driving phenotypic plasticity have been identified, therapeutic success is yet to be achieved. To identify putative master regulator transcription factors (MR-TF) driving phenotypic plasticity in PCa, this work utilized a multiomic approach using genetically engineered mouse models of prostate cancer combined with patient data to identify MYBL2 as a significantly enriched transcription factor in PCa exhibiting phenotypic plasticity. Genetic inhibition of Mybl2 using independent murine PCa cell lines representing phenotypic plasticity demonstrated Mybl2 loss significantly decreased in vivo growth as well as cell fitness and repressed gene expression signatures involved in pluripotency and stemness. Because MYBL2 is currently not druggable, a MYBL2 gene signature was employed to identify cyclin-dependent kinase-2 (CDK2) as a potential therapeutic target. CDK2 inhibition phenocopied genetic loss of Mybl2 and significantly decreased in vivo tumor growth associated with enrichment of DNA damage. Together, this work demonstrates MYBL2 as an important MR-TF driving phenotypic plasticity in PCa. Further, high MYBL2 activity identifies PCa that would be responsive to CDK2 inhibition. Significance: PCa that escapes therapy targeting the androgen receptor signaling pathways via phenotypic plasticity are currently untreatable. Our study identifies MYBL2 as a MR-TF in phenotypic plastic PCa and implicates CDK2 inhibition as novel therapeutic target for this most lethal subtype of PCa.

3.
Epigenomes ; 6(3)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36135315

RESUMO

The polycomb group (PcG) proteins are a subset of transcription regulators highly conserved throughout evolution. Their principal role is to epigenetically modify chromatin landscapes and control the expression of master transcriptional programs to determine cellular identity. The two mayor PcG protein complexes that have been identified in mammals to date are Polycomb Repressive Complex 1 (PRC1) and 2 (PRC2). These protein complexes selectively repress gene expression via the induction of covalent post-translational histone modifications, promoting chromatin structure stabilization. PRC2 catalyzes the histone H3 methylation at lysine 27 (H3K27me1/2/3), inducing heterochromatin structures. This activity is controlled by the formation of a multi-subunit complex, which includes enhancer of zeste (EZH2), embryonic ectoderm development protein (EED), and suppressor of zeste 12 (SUZ12). This review will summarize the latest insights into how PRC2 in mammalian cells regulates transcription to orchestrate the temporal and tissue-specific expression of genes to determine cell identity and cell-fate decisions. We will specifically describe how PRC2 dysregulation in different cell types can promote phenotypic plasticity and/or non-mutational epigenetic reprogramming, inducing the development of highly aggressive epithelial neuroendocrine carcinomas, including prostate, small cell lung, and Merkel cell cancer. With this, EZH2 has emerged as an important actionable therapeutic target in such cancers.

4.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36107619

RESUMO

Malignant melanoma is a major public health issue displaying frequent resistance to targeted therapy and immunotherapy. A major challenge lies in better understanding how melanoma cells evade immune elimination and how tumor growth and metastasis is facilitated by the tumor microenvironment. Here, we show that expression of the cytokine thymic stromal lymphopoietin (TSLP) by epidermal keratinocytes is induced by cutaneous melanoma in both mice and humans. Using genetically engineered models of melanoma and tumor cell grafting combined with TSLP-KO or overexpression, we defined a crosstalk between melanoma cells, keratinocytes, and immune cells in establishing a tumor-promoting microenvironment. Keratinocyte-derived TSLP is induced by signals derived from melanoma cells and subsequently acts via immune cells to promote melanoma progression and metastasis. Furthermore, we show that TSLP signals through TSLP receptor-expressing (TSLPR-expressing) DCs to play an unrecognized role in promoting GATA3+ Tregs expressing a gene signature including ST2, CCR8, ICOS, PD-1, CTLA-4, and OX40 and exhibiting a potent suppressive activity on CD8+ T cell proliferation and IFN-γ production. An analogous population of GATA3-expressing Tregs was also identified in human melanoma tumors. Our study provides insights into the role of TSLP in programming a protumoral immune microenvironment in cutaneous melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Camundongos , Animais , Microambiente Tumoral , Melanoma/genética , Melanoma/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Citocinas/metabolismo , Queratinócitos/metabolismo , Linfopoietina do Estroma do Timo , Melanoma Maligno Cutâneo
5.
J Control Release ; 268: 247-258, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29074407

RESUMO

Biological therapies based on recombinant proteins such as antibodies or cytokines are continuously improving the repertoire of treatments against cancer. However, safety and efficacy of this approach is often limited by inappropriate biodistribution and pharmacokinetics of the proteins when they are administered systemically. Local administration of gene therapy vectors encoding these proteins would be a feasible alternative if they could mediate long-term and controlled expression of the transgene after a single intratumoral administration. We describe a new vector platform specially designed for this purpose. Different combinations of transactivators and promoters were evaluated to obtain a fully humanized inducible system responsive to the well-characterized drug mifepristone. The optimal transactivator conformation was based on DNA binding domains from the chimeric protein ZFHD1 fused to the progesterone receptor ligand binding domain and the NFkb p65 activation domain. The expression of this hybrid transactivator under the control of the elongation factor 1α (EF1α) or the chimeric CAG promoters ensured functionality of the system in a variety of cancer types. Expression cassettes with luciferase as a reporter gene were incorporated into High-Capacity adenoviral vectors (HC-Ad) for in vivo evaluation. Systemic administration of the vectors into C57BL/6 mice revealed that the vector based on the EF1α promoter (HCA-EF-ZP) allows tight control of transgene expression and remains stable for at least two months, whereas the CAG promoter suffers a progressive inactivation. Using an orthotopic pancreatic cancer model in syngeneic C57BL/6 mice we show that the local administration of HCA-EF-ZP achieves better tumor/liver ratio of luciferase production than the intravenous route. However, regional spread of the vector led to substantial transgene expression in peritoneal organs. We reduced this leakage through genetic modification of the vector capsid to display RGD and poly-lysine motifs in the fiber knob. Safety and antitumor effect of this gene therapy platform was demonstrated using interleukin-12 as a therapeutic gene. In conclusion, we have developed a new tool that allows local, sustained and controlled production of therapeutic proteins in tumors.


Assuntos
Interleucina-12/genética , Mifepristona/administração & dosagem , Neoplasias Pancreáticas/genética , Transgenes , Microambiente Tumoral/genética , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Feminino , Vetores Genéticos , Humanos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão , Fatores de Transcrição
6.
J Assoc Genet Technol ; 42(3): 98-103, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27606950

RESUMO

In 2016, there will be an estimated 6,590 new cases of acute lymphocytic leukemia and 18,960 new cases of chronic lymphocytic leukemia in the United States. These and other lymphoid malignancies have a key player in common, JAK2, an enzyme from the Janus kinase (JAK) family. Deviations from the normal functioning of JAK2, particularly in the JAK-signal transducer and activator of transcription (STAT) pathway, can disrupt homeostasis and drive the accumulation of intermediate progenitors, contributing to the development of myeloid and lymphoid malignancies. In this review, the recent literature on JAK2 mutations in lymphoid malignancies is summarized, concluding with a discussion of the treatment of lymphoid malignancies. New directions for future research have been underlined to advance the clinical management of lymphoid malignancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA