Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Structure ; 32(1): 83-96.e4, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38042148

RESUMO

Nucleobases such as inosine have been extensively utilized to map direct contacts by proteins in the DNA groove. Their deployment as targeted probes of dynamics and hydration, which are dominant thermodynamic drivers of affinity and specificity, has been limited by a paucity of suitable experimental models. We report a joint crystallographic, thermodynamic, and computational study of the bidentate complex of the arginine side chain with a Watson-Crick guanine (Arg×GC), a highly specific configuration adopted by major transcription factors throughout the eukaryotic branches in the Tree of Life. Using the ETS-family factor PU.1 as a high-resolution structural framework, inosine substitution for guanine resulted in a sharp dissection of conformational dynamics and hydration and elucidated their role in the DNA specificity of PU.1. Our work suggests an under-exploited utility of modified nucleobases in untangling the structural thermodynamics of interactions, such as the Arg×GC motif, where direct and indirect readout are tightly integrated.


Assuntos
Proteínas Proto-Oncogênicas , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Sítios de Ligação , Ligação Proteica , Proteínas Proto-Oncogênicas/química , Termodinâmica , DNA/metabolismo , Guanina , Inosina/metabolismo , Conformação de Ácido Nucleico
2.
Sci Adv ; 6(8): eaay3178, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32128405

RESUMO

Transcription factors comprise a major reservoir of conformational disorder in the eukaryotic proteome. The hematopoietic master regulator PU.1 presents a well-defined model of the most common configuration of intrinsically disordered regions (IDRs) in transcription factors. We report that the structured DNA binding domain (DBD) of PU.1 regulates gene expression via antagonistic dimeric states that are reciprocally controlled by cognate DNA on the one hand and by its proximal anionic IDR on the other. The two conformers are mediated by distinct regions of the DBD without structured contributions from the tethered IDRs. Unlike DNA-bound complexes, the unbound dimer is markedly destabilized. Dimerization without DNA is promoted by progressive phosphomimetic substitutions of IDR residues that are phosphorylated in immune activation and stimulated by anionic crowding agents. These results suggest a previously unidentified, nonstructural role for charged IDRs in conformational control by mitigating electrostatic penalties that would mask the interactions of highly cationic DBDs.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , Multimerização Proteica , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , DNA/metabolismo , Retroalimentação Fisiológica , Humanos , Proteínas Intrinsicamente Desordenadas/química , Mutação/genética , Conformação Proteica , Domínios Proteicos , Estabilidade Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Espectroscopia de Prótons por Ressonância Magnética , Eletricidade Estática , Transativadores/química , Transativadores/genética , Ativação Transcricional
3.
J Biol Chem ; 292(39): 16044-16054, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28790174

RESUMO

The eponymous DNA-binding domain of ETS (E26 transformation-specific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.1 ETS complexes. Whereas 10 bp of DNA was sufficient to support PU.1 binding as a monomer, additional flanking bases were required to invoke sequential dimerization of the bound protein. NMR spectroscopy revealed a marked loss of signal intensity in the 2:1 complex, and mutational analysis implicated the distal surface away from the bound DNA as the dimerization interface. Hydroxyl radical DNA footprinting indicated that the site-specifically bound PU.1 dimers occupied an extended DNA interface downstream from the 5'-GGAA-3' core consensus relative to its 1:1 counterpart, thus explaining the apparent site size requirement for sequential dimerization. The site-specifically bound PU.1 dimer resisted competition from nonspecific DNA and showed affinities similar to other functionally significant PU.1 interactions. As sequential dimerization did not occur with the ETS domain of Ets-1, a close structural homolog of PU.1, 2:1 complex formation may represent an alternative autoinhibitory mechanism in the ETS family at the protein-DNA level.


Assuntos
DNA/metabolismo , Modelos Moleculares , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Sítios de Ligação , DNA/química , Pegada de DNA , Dimerização , Deleção de Genes , Cinética , Camundongos , Simulação de Dinâmica Molecular , Mutação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transativadores/química , Transativadores/genética
4.
Nucleic Acids Res ; 44(18): 8576-8587, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27566150

RESUMO

A truly universal nucleobase enables a host of novel applications such as simplified templates for PCR primers, randomized sequencing and DNA based devices. A universal base must pair indiscriminately to each of the canonical bases with little or preferably no destabilization of the overall duplex. In reality, many candidates either destabilize the duplex or do not base pair indiscriminatingly. The novel base 8-aza-7-deazaadenine (pyrazolo[3,4-d]pyrimidin- 4-amine) N8-(2'deoxyribonucleoside), a deoxyadenosine analog (UB), pairs with each of the natural DNA bases with little sequence preference. We have utilized NMR complemented with molecular dynamic calculations to characterize the structure and dynamics of a UB incorporated into a DNA duplex. The UB participates in base stacking with little to no perturbation of the local structure yet forms an unusual base pair that samples multiple conformations. These local dynamics result in the complete disappearance of a single UB proton resonance under native conditions. Accommodation of the UB is additionally stabilized via heightened backbone conformational sampling. NMR combined with various computational techniques has allowed for a comprehensive characterization of both structural and dynamic effects of the UB in a DNA duplex and underlines that the UB as a strong candidate for universal base applications.


Assuntos
Adenina/análogos & derivados , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Adenina/química , Adenina/metabolismo , Sequência de Bases , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glicosídeos/química , Prótons , Termodinâmica , Fatores de Tempo
5.
Protein Sci ; 25(2): 479-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26540340

RESUMO

Arginine methylation is important in biological systems. Recent studies link the deregulation of protein arginine methyltransferases with certain cancers. To assess the impact of methylation on interaction with other biomolecules, the pKa values of methylated arginine variants were determined using NMR data. The pKa values of monomethylated, symmetrically dimethylated, and asymmetrically dimethylated arginine are similar to the unmodified arginine (14.2 ± 0.4). Although the pKa value has not been significantly affected by methylation, consequences of methylation include changes in charge distribution and steric effects, suggesting alternative mechanisms for recognition.


Assuntos
Arginina/análogos & derivados , Arginina/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Metilação , Modelos Moleculares , Concentração Osmolar
6.
Biochemistry ; 54(2): 413-21, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25478900

RESUMO

Choline oxidase catalyzes the oxidation of choline to glycine betaine through a two-step, four-electron reaction with betaine aldehyde as an intermediate. Oxygen is the final electron acceptor. Alcohol oxidation is initiated by the removal of the substrate hydroxyl proton by an unknown active site residue with a pKa value of ∼7.5. In the crystal structure of the enzyme in complex with glycine betaine, H466 is ≤3.1 Å from the carboxylate oxygen of the reaction product, suggesting a possible role in the proton abstraction reaction catalyzed by the enzyme. H466, along with another potential candidate, H351, was previously mutated to alanine, but this failed to establish if either residue was involved in activation of the substrate. In this study, single variants of choline oxidase with H466 and H351 substituted with glutamine were prepared, purified, and characterized. The kcat and kcat/Km values of the H351Q enzyme in atmospheric oxygen were 45- and 5000-fold lower than those of the wild-type enzyme, respectively, whereas the H466Q enzyme was inactive when assayed polarographically with choline. In the H466Q enzyme, the rate constant for anaerobic flavin reduction (kred) with choline was 1 million-fold lower than in the wild-type enzyme. A comparison of the fluorescence, circular dichroism, and (1)H nuclear magnetic resonance spectroscopic properties of the H466Q enzyme and the wild-type enzyme is consistent with the mutation not affecting the topology of the active site or the overall fold of the protein. Thus, the change in the kred value and the lack of oxygen consumption upon mutation of histidine to glutamine are not due to misfolded protein but rather to the variant enzyme being unable to catalyze substrate oxidation. On the basis of the kinetic and spectroscopic results presented here and the recent structural information, we propose that H466 is the residue that activates choline to the alkoxide for the subsequent hydride transfer reaction to the enzyme-bound flavin.


Assuntos
Oxirredutases do Álcool/metabolismo , Álcoois/metabolismo , Arthrobacter/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Substituição de Aminoácidos , Arthrobacter/química , Arthrobacter/genética , Arthrobacter/metabolismo , Betaína/análogos & derivados , Betaína/metabolismo , Domínio Catalítico , Colina/metabolismo , Cristalografia por Raios X , Flavinas/metabolismo , Modelos Moleculares , Oxirredução
7.
PLoS One ; 9(3): e91200, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24625964

RESUMO

Accumulating evidence shows the 26S proteasome is involved in the regulation of gene expression. We and others have demonstrated that proteasome components bind to sites of gene transcription, regulate covalent modifications to histones, and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome influences transcription remain unclear, although prior observations suggest both proteolytic and non-proteolytic activities. Here, we define novel, non-proteolytic, roles for each of the three 19S heterodimers, represented by the 19S ATPases Sug1, S7, and S6a, in mammalian gene expression using the inflammatory gene CIITApIV. These 19S ATPases are recruited to induced CIITApIV promoters and also associate with CIITA coding regions. Additionally, these ATPases interact with elongation factor PTEFb complex members CDK9 and Hexim-1 and with Ser5 phosphorylated RNA Pol II. Both the generation of transcripts from CIITApIV and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by siRNA mediated knockdown of these 19S ATPases. Together, these results define novel roles for 19S ATPases in mammalian gene expression and indicate roles for these ATPases in promoting transcription processes.


Assuntos
Adenosina Trifosfatases/química , Proteínas Nucleares/química , Transativadores/química , Transcrição Gênica , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/química , Anticorpos/química , Regulação da Expressão Gênica , Células HeLa , Histonas/química , Humanos , Proteínas com Domínio LIM/química , Complexo de Endopeptidases do Proteassoma/química , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Interferente Pequeno/química , Fatores de Transcrição/química
8.
Biochim Biophys Acta ; 1828(2): 595-601, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23031574

RESUMO

The modulation of the Drosophila Shaw2 Kv channel by 1-alkanols and inhaled anesthetics is correlated with the involvement of the S4-S5 linker and C-terminus of S6, and consistent with stabilization of the channel's closed state. Structural analysis of peptides from S4-S5 (L45) and S6 (S6c), by nuclear magnetic resonance and circular dichroism spectroscopy supports that an α-helical conformation was adopted by L45, while S6c was only in an unstable/dynamic partially folded α-helix in dodecylphosphocholine micelles. Solvent accessibility and paramagnetic probing of L45 revealed that L45 lies parallel to the surface of micelles with charged and polar residues pointing towards the solution while hydrophobic residues are buried inside the micelles. Chemical shift perturbation introduced by 1-butanol on residues Gln320, Thr321, Phe322 and Arg323 of L45, as well as Thr423 and Gln424 of S6c indicates possible anesthetic binding sites on these two important components in the channel activation apparatus. Diffusion measurements confirmed the association of L45, S6c and 1-butanol with micelles which suggests the capability of 1-butanol to influence a possible interaction of L45 and S6c in the micelle environment.


Assuntos
Anestésicos Gerais/química , Proteínas de Drosophila/química , Espectroscopia de Ressonância Magnética/métodos , Micelas , Peptídeos/química , Canais de Potássio Shaw/química , 1-Butanol/química , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Dicroísmo Circular/métodos , Difusão , Drosophila melanogaster , Imageamento Tridimensional/métodos , Cinética , Modelos Estatísticos , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Solventes/química
9.
Anal Biochem ; 427(1): 79-81, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22609075

RESUMO

Low-temperature nuclear magnetic resonance (NMR), especially under supercooled conditions, can give critical insight into biomolecular systems via slowed dynamics and exchange rates. These conditions can also increase correlation times of small molecules, potentially allowing for NMR structural study of small molecules at moderate field strengths. Agarose gels allow for supercooled conditions and are simple to prepare, invisible to NMR, and noninteractive with most biomolecules and organics. Here we demonstrate their use with nucleic acids, small organic molecules, and peptides.


Assuntos
DNA/análise , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/análise , Sefarose/química , Sacarose/análise , Temperatura Baixa , Géis/química , Oligonucleotídeos/análise , Água/química
10.
Med Res Rev ; 32(3): 659-83, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22539108

RESUMO

DNA damage, a consequence of external factors and inherent metabolic processes, is omnipresent. Nature has devised multiple strategies to safeguard the genetic information and developed intricate repair mechanisms and pathways to reverse an array of different DNA lesions, including mismatches. Failure of the DNA repair systems may result in mutation, premature ageing, and cancer. In this review, we focus on structural and dynamic aspects of detection of lesions in base excision and mismatch repair. A thorough understanding of repair, pathways, and regulation is necessary to develop strategies for targeting DNA-related pathologies.


Assuntos
Dano ao DNA , Reparo de Erro de Pareamento de DNA , Cromatina/metabolismo , DNA/química , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Desoxiuridina/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Modelos Moleculares , Proteína 2 Homóloga a MutS/metabolismo , Uracila-DNA Glicosidase/metabolismo
11.
J Mol Biol ; 416(3): 425-37, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22227386

RESUMO

DNA sequence context has long been known to modulate detection and repair of DNA damage. Recent studies using experimental and computational approaches have sought to provide a basis for this observation. We have previously shown that an α-anomeric adenosine (αA) flanked by cytosines (5'CαAC-3') resulted in a kinked DNA duplex with an enlarged minor groove. Comparison of different flanking sequences revealed that a DNA duplex containing a 5'CαAG-3' motif exhibits unique substrate properties. However, this substrate was not distinguished by unusual thermodynamic properties. To understand the structural basis of the altered recognition, we have determined the solution structure of a DNA duplex with a 5'CαAG-3' core, using an extensive set of restraints including dipolar couplings and backbone torsion angles. The NMR structure exhibits an excellent agreement with the data (total R(X) <5.3%). The αA base is intrahelical, in a reverse Watson-Crick orientation, and forms a weak base pair with a thymine of the opposite strand. In comparison to the DNA duplex with a 5'CαAC-3' core, we observe a significant reduction of the local perturbation (backbone, stacking, tilt, roll, and twist), resulting in a straighter DNA with narrower minor groove. Overall, these features result in a less perturbed DNA helix and obscure the presence of the lesion compared to the 5'CαAC-3' sequence. The improved stacking of the 5'CαAG-3' core also affects the energetics of the DNA deformation that is required to form a catalytically competent complex. These traits provide a rationale for the modulation of the recognition by endonuclease IV.


Assuntos
Dano ao DNA , DNA/química , Modelos Moleculares , Conformação de Ácido Nucleico , Sequência de Bases , Simulação por Computador , Desoxirribonuclease IV (Fago T4-Induzido)/química , Termodinâmica
12.
Biopolymers ; 95(11): 755-62, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21538331

RESUMO

Secondary amide cis peptide bonds are of even lower abundance than the cis tertiary amide bonds of prolines, yet they are of biochemical importance. Using 2D NMR exchange spectroscopy (EXSY) we investigated the formation of cis peptide bonds in several oligopeptides: Ac-G-G-G-NH(2) , Ac-I-G-G-NH(2) , Ac-I-G-G-N-NH(2) and its cyclic form: I-G-G-N in dimethylsulfoxide (DMSO). From the NMR studies, using the amide protons as monitors, an occurrence of 0.13-0.23% of cis bonds was obtained at 296 K. The rate constants for the trans to cis conversion determined from 2D EXSY spectroscopy were 4-9 × 10(-3) s(-1) . Multiple minor conformations were detected for most peptide bonds. From their thermodynamic and kinetic properties the cis isomers are distinguished from minor trans isomers that appear because of an adjacent cis peptide bond. Solvent and sequence effects were investigated utilizing N-methylacetamide (NMA) and various peptides, which revealed a unique enthalpy profile in DMSO. The cyclization of a tetrapeptide resulted in greatly lowered cis populations and slower isomerization rates compared to its linear counterpart, further highlighting the impact of structural constraints.


Assuntos
Amidas/química , Peptídeos/química , Isomerismo , Cinética , Ressonância Magnética Nuclear Biomolecular , Teoria Quântica , Termodinâmica
13.
J Phys Chem B ; 113(27): 9326-9, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19569725

RESUMO

In this work, pulsed field gradient NMR is used to measure the translational self-diffusion constants (D(T)'s) of five simple peptides (GG, GR, GGR, GGNA, and GGRA) as well as glycine, G, at low concentration. The experiments were carried out in D(2)O at 298 K at pD = 3.5 in 80 mM sodium phosphate buffer. Of the five peptides, four are being reported for the first time (all except GG) and the results of G and GG are compared with D(T)'s from the literature. When corrected for differences in solvent viscosity and temperature, the discrepancy between D(T)'s of G and GG measured in the present work are lower than previously published values by several percent. Given the range of values reported in the literature for specific values of the amino acids by different groups, this discrepancy is regarded as reasonable. Diffusion constants can provide useful information about molecular size and conformation. Modeling a peptide made up of N amino acids as 2N beads (2 for each amino acid present in the peptide), we examine the diffusion constants of the above-mentioned peptides and conclude they are consistent with unfolded or random conformations in solution. Also, by comparing the diffusion constants of G and GG, an estimate of the change in solvation volume due to the loss of a water molecule can be estimated.


Assuntos
Glicina/química , Espectroscopia de Ressonância Magnética/métodos , Peptídeos/química , Sequência de Aminoácidos , Difusão
14.
Med Res Rev ; 29(6): 843-66, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19378287

RESUMO

Hepatitis C virus (HCV), a hepatotropic RNA virus, is a major causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinomas. The host immune responses, especially cellular immune responses, play an important role in viral clearance, liver injury, and persistent HCV infection. A thorough characterization of the HCV cellular immune responses is important for understanding the interplays between host immune system and viral components, as well as for developing effective therapeutic and prophylactic HCV vaccines. Recent advances that provide better understanding the cell immune responses in HCV infection are summarized in this article.


Assuntos
Hepatite C/imunologia , Imunidade Celular , Hepacivirus/patogenicidade , Hepacivirus/fisiologia , Humanos , Imunidade Inata
15.
Proc Natl Acad Sci U S A ; 106(11): 4177-82, 2009 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-19237577

RESUMO

Numerous DNA mismatches and lesions activate MutS homologue (MSH) ATPase activity that is essential for mismatch repair (MMR). We have found that a mismatch embedded in a nearest-neighbor sequence context containing symmetric 3'-purines (2 x 3'-purines) enhanced, whereas symmetric 3'-pyrimidines (2 x 3'-pyrimidines) reduced, hMSH2-hMSH6 ATPase activation. The 3'-purine/pyrimidine effect was most evident for G-containing mispairs. A similar trend pervaded mismatch binding (K(D)) and the melting of unbound oligonucleotides (T(m); DeltaG). However, these latter measures did not accurately predict the hierarchy of MSH ATPase activation. NMR studies of imino proton lifetime, solvent accessibility, and NOE connectivity suggest that sequence contexts that provoke improved MSH-activation displayed enhanced localized DNA flexibility: a dynamic DNA signature that may account for the wide range of lesions that activate MSH functions.


Assuntos
Pareamento Incorreto de Bases , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Bases , Reparo do DNA , Ativação Enzimática , Humanos , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Purinas/química , Pirimidinas/química
16.
J Phys Chem A ; 111(8): 1452-5, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17269757

RESUMO

In this work, the translational self-diffusion constants, DT's, of 12 amino acids (Ala, Arg, Asn, Asp, Cys, Glu, His, Ile, Lys, Met, Phe, and Ser) are measured by field gradient NMR and extrapolated to infinite dilution. The experiments were carried out in D2O at 298 K at pD approximately =3.5 in 50 mM sodium phosphate buffer. Of these 12 amino acids, 6 are being reported for the first time (Asp, Cys, Glu, His, Lys, and Met) and the remaining 6 (Ala, Arg, Asn, Ile, Phe, and Ser) are compared with DT's from the literature. When corrected for differences in solvent viscosity and temperature, the discrepancy between DT's measured in the present work and those reported previously is always <8%, which is reasonable given the range of values reported previously by different groups. With the present work, DT's for all of the amino acids are now available. These diffusion constants are then used in modeling studies of the diffusion and free solution electrophoretic mobility, mu, of several model peptides. For this set of peptides, it is shown that modeling using revised input parameters results in improved agreement between model and experimental mobilities.


Assuntos
Aminoácidos/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Peptídeos/química , Difusão , Sensibilidade e Especificidade
17.
Biopolymers ; 83(4): 352-64, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16826557

RESUMO

The Rev responsive element (RRE), a part of unspliced human immunodeficiency virus (HIV) RNA, serves a crucial role in the production of infectious HIV virions. The viral protein Rev binds to RRE and facilitates transport of mRNA to the cytoplasm. Inhibition of the Rev-RRE interaction disrupts the viral life cycle. Using a phage display protocol, dual zinc finger proteins (ZNFs) were generated that bind specifically to RREIIB at the high affinity Rev binding site. These proteins were further shortened and simplified, and they still retained their RNA binding affinity. The solution structures of ZNF29 and a mutant, ZNF29G29R, have been determined by nuclear magnetic resonance (NMR) spectroscopy. Both proteins form C(2)H(2)-type zinc fingers with essentially identical structures. RNA protein interactions were evaluated quantitatively by isothermal titration calorimetry, which revealed dissociation constants (K(d)'s) in the nanomolar range. The interaction with the RNA is dependent upon the zinc finger structure; in the presence of EDTA, RNA binding is abolished. For both proteins, RNA binding is mediated by the alpha-helical portion of the zinc fingers and target the bulge region of RREIIB-TR. However, ZNF29G29R exhibits significantly stronger binding to the RNA target than ZNF29; this illustrates that the binding of the zinc finger scaffold is amenable to further improvements.


Assuntos
Produtos do Gene rev/metabolismo , HIV/metabolismo , RNA Viral/metabolismo , Elementos de Resposta/genética , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Produtos do Gene rev/química , Produtos do Gene rev/genética , HIV/genética , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , Estrutura Secundária de Proteína , RNA Viral/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição da Família Snail , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética , Produtos do Gene rev do Vírus da Imunodeficiência Humana
18.
Biochemistry ; 45(6): 1979-86, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16460045

RESUMO

Choline oxidase catalyzes the four-electron oxidation of choline to glycine betaine via two sequential FAD-dependent reactions in which betaine aldehyde is formed as an intermediate. The chemical mechanism for the oxidation of choline catalyzed by choline oxidase was recently elucidated by using kinetic isotope effects [Fan, F., and Gadda, G. (2005) J. Am. Chem. Soc. 127, 2067-2074]. In this study, the oxidation of betaine aldehyde has been investigated by using spectroscopic and kinetic analyses with betaine aldehyde and its isosteric analogue 3,3-dimethylbutyraldehyde. The pH dependence of the kcat/Km and kcat values with betaine aldehyde showed that a catalytic base with a pKa of approximately 6.7 is required for betaine aldehyde oxidation. Complete reduction of the enzyme-bound flavin was observed in a stopped-flow spectrophotometer upon anaerobic mixing with betaine aldehyde or choline at pH 8, with similar k(red) values > or = 48 s(-1). In contrast, only 10-26% of the enzyme-bound flavin was reduced by 3,3-dimethylbutyraldehyde between pH 6 and 10. Furthermore, this compound acted as a competitive inhibitor versus choline. NMR spectroscopic analyses indicated that betaine aldehyde exists predominantly (99%) as a diol form in aqueous solution. In contrast, the thermodynamic equilibrium for 3,3-dimethylbutyraldehyde favors the aldehyde (> or = 65%) over the hydrated form in the pH range from 6 to 10. The keto species of 3,3-dimethylbutyraldehyde is reactive toward enzymic nucleophiles, as suggested by the kinetic data with NAD+-dependent yeast aldehyde dehydrogenase. The data presented suggest that choline oxidase utilizes the hydrated species of the aldehyde as substrate in a mechanism for aldehyde oxidation in which hydride transfer is triggered by an active site base.


Assuntos
Oxirredutases do Álcool/metabolismo , Aldeídos/metabolismo , Betaína/análogos & derivados , Aldeídos/química , Betaína/química , Betaína/metabolismo , Sítios de Ligação , Catálise , Flavinas/química , Flavinas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Modelos Químicos , Oxirredução , Água/química
19.
J Mol Biol ; 338(1): 77-91, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-15050824

RESUMO

The cytotoxic alpha anomer of adenosine, generated in situ by radicals, must be recognized and repaired to maintain genomic stability. Endonuclease IV (Endo IV), a member of the base excision repair (BER) enzyme family, in addition to acting on abasic sites, has the auxiliary function of removing this mutagenic nucleotide in Escherichia coli. We have employed enzymatic, thermodynamic, and structural studies on DNA duplexes containing a central alpha-anomeric adenosine residue to characterize the role of DNA structure on recognition and catalysis by Endo IV. The enzyme recognizes and cleaves our alphaA-containing DNA duplexes at the site of the modification. The NMR solution structure of the DNA decamer duplex establishes that the single alpha-anomeric adenosine residue is intrahelical and stacks in a reverse Watson-Crick fashion consistent with the slight decrease in thermostability. However, the presence of this lesion confers significant changes to the global duplex conformation, resulting from a kink of the helical axis into the major groove and an opening of the minor groove emanating from the alpha-anomeric site. Interestingly, the conformation of the flanking base-paired segments is not greatly altered from a B-type conformation. The global structural changes caused by this lesion place the DNA along the conformational path leading to the DNA structure observed in the complex. Thus, it appears that the alpha-anomeric lesion facilitates recognition by Endo IV.


Assuntos
Adenosina/análogos & derivados , Adenosina/química , DNA Bacteriano/química , Desoxirribonuclease IV (Fago T4-Induzido)/química , Desoxirribonuclease IV (Fago T4-Induzido)/metabolismo , Escherichia coli/enzimologia , Catálise , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes , Soluções , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA