Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Peripher Nerv Syst ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874107

RESUMO

AIM: Biallelic mutations in the PTRH2 gene have been associated with infantile multisystem neurological, endocrine, and pancreatic disease (IMNEPD), a rare autosomal recessive disorder of variable expressivity characterized by global developmental delay, intellectual disability or borderline IQ level, sensorineural hearing loss, ataxia, and pancreatic insufficiency. Various additional features may be included, such as peripheral neuropathy, facial dysmorphism, hypothyroidism, hepatic fibrosis, postnatal microcephaly, cerebellar atrophy, and epilepsy. Here, we report the first Italian family presenting only predominant neurological features. METHODS: Extensive neurological and neurophysiological evaluations have been conducted on the two affected brothers and their healthy mother since 1996. The diagnosis of peripheral neuropathy of probable hereditary origin was confirmed through a sural nerve biopsy. Exome sequencing was performed after the analysis of major neuropathy-associated genes yielded negative results. RESULTS: Whole-exome sequencing analysis identified the homozygous substitution c.256C>T (p.Gln86Ter) in the PTRH2 gene in the two siblings. According to American College of Medical Genetics and Genomics (ACMG) guidelines, the variant has been classified as pathogenic. At 48 years old, the proband's reevaluation confirmed a demyelinating sensorimotor polyneuropathy with bilateral sensorineural hearing loss that had been noted since he was 13. Additionally, drug-resistant epileptic seizures occurred when he was 32 years old. No hepatic or endocrinological signs developed. The younger affected brother, 47 years old, has an overlapping clinical presentation without epilepsy. INTERPRETATION: Our findings expand the clinical phenotype and further demonstrate the clinical heterogeneity related to PTRH2 variants. We thereby hope to better define IMNEPD and facilitate the identification and diagnosis of this novel disease entity.

2.
J Peripher Nerv Syst ; 28(4): 620-628, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897416

RESUMO

BACKGROUND AND AIMS: POLR3B gene encodes a subunit of RNA polymerase III (Pol III). Biallelic mutations in POLR3B are associated with leukodystrophies, but recently de novo heterozygous mutations have been described in early onset peripheral demyelinating neuropathies with or without central involvement. Here, we report the first Italian case carrying a de novo variant in POLR3B with a pure neuropathy phenotype and primary axonal involvement of the largest nerve fibers. METHODS: Nerve conduction studies, sympathetic skin response, dynamic sweat test, tactile and thermal quantitative sensory testing and brain magnetic resonance imaging were performed according to standard procedures. Histopathological examination was performed on skin and sural nerve biopsies. Molecular analysis of the proband and his relatives was performed with Next Generation Sequencing. The impact of the identified variant on the overall protein structure was evaluated through rotamers method. RESULTS: Since his early adolescence, the patient presented with signs of polyneuropathy with severe distal weakness, atrophy, and reduced sensation. Neurophysiological studies showed a sensory-motor axonal polyneuropathy, with confirmed small fiber involvement. In addition, skin biopsy and sural nerve biopsy showed predominant large fibers involvement. A trio's whole exome sequencing revealed a novel de novo variant p.(Arg1046Cys) in POLR3B, which was classified as Probably Pathogenic. Molecular modeling data confirmed a deleterious effect of the variant on protein structure. INTERPRETATION: Neurophysiological and morphological findings suggest a primary axonal involvement of the largest nerve fibers in POLR3B-related neuropathies. A partial loss of function mechanism is proposed for both neuropathy and leukodystrophy phenotypes.


Assuntos
Doenças Desmielinizantes , Doenças do Sistema Nervoso Periférico , Polineuropatias , RNA Polimerase III , Adolescente , Humanos , Axônios , Doenças Desmielinizantes/genética , Mutação , Fibras Nervosas/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Polineuropatias/genética , Proteínas/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismo
3.
Acta Myol ; 42(4): 113-117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38406380

RESUMO

Biallelic mutations in the sorbitol dehydrogenase (SORD) gene have been identified as a genetic cause of autosomal recessive axonal Charcot-Marie-Tooth disease 2 (CMT2) and distal hereditary motor neuropathy (dHMN). We herein review the main phenotypes associated with SORD mutations and report the case of a 16-year-old man who was referred to our outpatient clinic for a slowly worsening gait disorder with wasting and weakness of distal lower limbs musculature. Since creatine phosphokinase (CPK) values were persistently raised (1.5fold increased) and a Next-Generation Sequencing CMT-associated panel failed in identifying pathogenic variants, a muscle biopsy was performed with evidence of alterations suggestive of a protein surplus distal myopathy. Finally, Whole-Exome Sequencing (WES) identified two pathogenic SORD variants in the heterozygous state: c.458C > A (p.Ala153Asp) and c.757delG (p.Ala253Glnfs*27). This is an isolated report of compound heterozygosity for two SORD mutations associated with clinical and histological signs of skeletal muscle involvement, expanding the phenotypic expression of SORD mutations.


Assuntos
Doença de Charcot-Marie-Tooth , L-Iditol 2-Desidrogenase , Masculino , Humanos , Adolescente , L-Iditol 2-Desidrogenase/genética , Doença de Charcot-Marie-Tooth/genética , Músculo Esquelético/patologia , Mutação , Fenótipo , Linhagem
4.
Mol Genet Genomic Med ; 9(9): e1753, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34318601

RESUMO

BACKGROUND: Vascular Ehlers-Danlos syndrome (vEDS) is a heritable connective tissue disorder caused by defects in the type III collagen protein. It is generally considered the most severe form of Ehlers-Danlos syndrome (EDS) due to an increased risk of spontaneous artery or organ rupture. vEDS has an extremely heterogeneous presentation and muscle rupture is considered a minor diagnostic criterium. METHODS: A patient with a long history of inconclusive examinations and investigations was referred to our unit. The clinical picture was mainly characterized by muscle ruptures, whereas the cardiovascular involvement was limited to mitral regurgitation. We performed a panel analysis of genes associated with inheritable heart diseases using the TruSight Cardio kit (Illumina). A skin biopsy was then performed for functional studies to analyze the different forms of collagen molecules produced in vitro by cutaneous fibroblasts. RESULTS: The patient presented the novel variant c.3478A>G (p.Ile1160Val) in COL3A1 (NM_000090.3), whose pathogenicity was supported by biochemical analysis of type III collagen. CONCLUSION: In this report, we describe a case of vEDS with predominant and severe musculoskeletal involvement. Our findings provide insight into genetic variants and clinical expression of vEDS, broadening the clinical scenario of the syndrome.


Assuntos
Colágeno Tipo III/genética , Síndrome de Ehlers-Danlos/genética , Fenótipo , Adulto , Síndrome de Ehlers-Danlos/patologia , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação
5.
Front Neurol ; 10: 1218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824401

RESUMO

Nerve biopsy represents the conclusive step in the diagnostic work-up of peripheral neuropathies, and its diagnostic yield is still debated. The aim of this study is to consider the impact of nerve biopsy on reaching a useful diagnosis in different peripheral neuropathies and its changing over time. We retrospectively analyzed 1,179 sural nerve biopsies performed in the period 1981-2017 at Neurological Clinic of Policlinico San Martino (Genoa). We relied on medical records and collected both clinical and pathological data in a database. Biopsy provided univocal diagnoses in 53% of cases (with an increase over time), multiple diagnostic options in 14%, while diagnosis was undetermined in 33% (undetermined reports decreased during the years). In 57% of patients, the pre-biopsy suspicion was confirmed, while in 43% sural biopsy modified the clinical diagnosis. The highest yield was in axonal neuropathies (29% undetermined reports vs. 40% in demyelinating and 48% in mixed neuropathies). In 68% of patients with vasculitic neuropathy, this etiology was already suspected, whereas in 32% nerve biopsy modified the clinical diagnosis. During the years, the number of annually performed biopsies decreased significantly (p = 0.007), with an increase in the mean age of patients (p < 0.0001). The percentage of hereditary neuropathies had a significant decrease (p = 0.016), while the rate of vasculitic and chronic inflammatory neuropathies increased (p < 0.0001). This is the largest Italian study addressing the yield of sural nerve biopsy. During the years, we observed a progressive refinement of the indication of this procedure, which confirms its utility for interstitial neuropathies, particularly if non-systemic vasculitic neuropathy is suspected.

6.
J Neurol Sci ; 398: 75-78, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30685713

RESUMO

Variants in Filamin C (FLNC) gene may cause either cardiomyopathies or different myopathies. We describe a family affected by a distal myopathy with autosomal dominant inheritance. The onset of the disease was in the third decade with gait impairment due to distal leg weakness. Subsequently, the disease progressed with an involvement of proximal lower limbs and hand muscles. Muscle biopsy, performed in one subject,identified relevant myofibrillar abnormalities. We performed a target gene panel testing for myofibrillar myopathies by NGS approach which identified a novel mutation in exon 3 of FLNC gene (c.A664G:p.M222V), within the N-terminal actin-binding (ABD) domain. This variant has been identified in all affected members of the family, thus supporting its pathogenic role. Differently from previously identified variants, our family showed a predominant leg involvement and myofibrillar aggregates, thus further expanding the spectrum of Filamin C related myopathies.


Assuntos
Actinas/genética , Miopatias Distais/genética , Filaminas/genética , Mutação/genética , Miopatias Congênitas Estruturais/genética , Actinas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Miopatias Distais/diagnóstico , Miopatias Distais/metabolismo , Filaminas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/metabolismo , Linhagem
7.
Orphanet J Rare Dis ; 13(1): 177, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30286783

RESUMO

Transthyretin (TTR)-related familial amyloid polyneuropathy (TTR-FAP) is a life-threatening autosomal dominant, systemic disease. First symptoms usually occur from the second to over sixth decade of life with a length-dependent axonal neuropathy with prominent involvement of the small fibers and multi-organ systemic failure.Early diagnosis is pivotal for effective therapeutic options, but it is hampered by the heterogeneity of the clinical spectrum which can lead to misdiagnosis with other neurological condition/disorder such as axonal sensory-motor neuropathy (CMT2) as described in literature.The aim of our study was to search for TTR mutations in a large cohort of selected undiagnosed axonal sensory-motor neuropathy patients to establish if misdiagnosis is frequent or rare in the Italian population.No TTR pathogenic variants were found in our cohort. In conclusion, our study shows that TTR testing not should be straightforward recommended in CMT2 patients but only when "red flags" TTR's features are present.


Assuntos
Neuropatias Amiloides Familiares/diagnóstico , Neuropatias Amiloides Familiares/genética , Predisposição Genética para Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
8.
J Neurol Sci ; 343(1-2): 183-6, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24880540

RESUMO

Charcot-Marie-Tooth disease type 1 (CMT1) is a common disorder of the peripheral nervous system. The underlying genetic cause is highly heterogeneous, and mutations in SIMPLE (small integral membrane protein of lysosome/late endosome) represent a rare cause of CMT type 1, named CMT1C. Herein, we report the clinical, electrophysiological, and neuropathological findings of an Italian CMT1 family with a novel SIMPLE missense mutation. The family exhibited electrophysiological signs of demyelination, predominantly affecting the lower limbs, with conduction blocks, and a wide variability of age of onset among the members. Molecular analysis identified the novel heterozygous missense mutation p.Pro135Arg in SIMPLE which co-segregated with the disease within the pedigree. In conclusion, our findings confirm that the genetic analysis of LITAF/SIMPLE should be considered for the diagnostic flow-chart of CMT1 patient, especially when nerve conduction studies show the presence of conduction blocks.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Saúde da Família , Proteínas de Membrana/genética , Mutação/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Condução Nervosa/genética , Nervos Periféricos/patologia , Nervos Periféricos/fisiopatologia
9.
Biochem Biophys Res Commun ; 443(1): 246-51, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24299952

RESUMO

MicroRNAs have been proposed as novel regulators of vascular inflammation and dysfunction. This study aimed to evaluate the role of miR-149 in regulating the expression of key molecules associated with TNFα-induced endothelial activation. miR-149 was selected by in silico analysis and microRNA target prediction. Endothelial dysfunction was induced by TNFα treatment in Eahy926 endothelial cells and HUVEC. miR-149 level was evaluated by quantitative real time-polymerase chain reaction (RT-qPCR). Metalloproteinase-9 (MMP-9) was measured by zymography, Inducible Nitric Oxide Synthase (iNOS) by immunoblotting, Interleukin-6 (IL-6) and Interleukin-8 (IL-8) by ELISA. miR-149 regulatory effect was evaluated by gain-of-function technique upon miR-149 mimics transfection. TNFα down-modulated miR-149 level in Eahy926 and HUVEC. This effect was significantly abolished in Eahy926 by treatment with p38MAPK inhibitor. miR-149 mimic transfection counteracted the TNFα-induced expression of MMP-9, iNOS and IL-6. No effect was detected on IL-8 expression. Our results suggest that miR-149 represents an important new regulator of endothelial function through negative regulation of molecules associated with TNFα-induced endothelial dysfunction.


Assuntos
Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Interleucina-6/genética , Metaloproteinase 9 da Matriz/genética , MicroRNAs/fisiologia , Óxido Nítrico Sintase Tipo II/genética , Fator de Necrose Tumoral alfa/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Cultivadas , Regulação para Baixo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , MicroRNAs/genética , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
10.
J Peripher Nerv Syst ; 17(3): 351-5, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22971097

RESUMO

We report the clinical, electrophysiological, and skin biopsy findings of an Italian Charcot-Marie-Tooth disease type 2 (CMT2) family with a novel heterozygous GDAP1 mutation. We observed a marked intra-familial phenotypic variability, in age at onset and disease severity which ranged from a typical CMT phenotype to an asymptomatic status. Electrophysiological study, consistent with an axonal sensory-motor neuropathy, confirmed a different degree of severity and disclosed minimal electrophysiological abnormalities also in the asymptomatic subjects. Skin biopsy findings showed a variable loss of large and small somatic nerve fibers. Molecular analysis identified a novel heterozygous missense mutation (Arg120Gly) in the GDAP1 gene which co-segregated with the disease within the pedigree. In conclusion, our findings confirm that the GDAP1 autosomal dominant mutations underlie a pronounced phenotypic variability, mimicking the effects of reduced penetrance. Notably, electrophysiological study in this family allowed to reveal hidden positive family history and assess a dominant inheritance pattern, revealing subclinical neuropathy in asymptomatic mutation carriers.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Genes Dominantes , Mutação/genética , Proteínas do Tecido Nervoso/genética , Adulto , Idoso , Criança , Feminino , Triagem de Portadores Genéticos , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Linhagem
11.
Int J Cancer ; 118(7): 1628-34, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16217765

RESUMO

Repair of some oxidized purines such as 8-oxo-7,8-dihydroguanine (8-oxoG) is inefficient in human cells in comparison to repair of other major endogenous lesions (e.g. uracil, abasic sites or oxidized pyrimidines). This is due to the poor catalytic properties of hOGG1, the major DNA glycosylase involved in 8-oxoG removal. The formamidopyrimidine DNA glycosylase (FPG) protein from E. coli is endowed with a potent 8-oxoG glycolytic activity coupled with a beta,delta-AP lyase. In this study, we have expressed FPG fused to the enhanced green fluorescent protein (EGFP) in human bladder cells to accelerate the repair of oxidative DNA damage. Cells expressing the fusion protein EGFP-FPG repaired 8-oxoG and AP sites at accelerated rates, in particular via the single-nucleotide insertion base excision repair (BER) pathway and were resistant to mutagenicity of the oxidizing carcinogen potassium bromate. FPG may stably protect human cells from some harmful effects of oxidative DNA damage.


Assuntos
Dano ao DNA , Reparo do DNA , DNA-Formamidopirimidina Glicosilase/metabolismo , Proteínas de Escherichia coli/metabolismo , Estresse Oxidativo , Bexiga Urinária/citologia , Bromatos/toxicidade , Carcinógenos/toxicidade , Técnicas de Cultura de Células , Fibroblastos , Proteínas de Fluorescência Verde , Guanina/análogos & derivados , Guanina/toxicidade , Humanos , Espécies Reativas de Oxigênio , Neoplasias da Bexiga Urinária/fisiopatologia
12.
Anticancer Res ; 24(6): 3811-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15736416

RESUMO

Repair of 8-oxo-7,8-dihydroguanine (8-oxoG) is inefficient in human cells due to the poor catalytic properties of hOGG1, the major DNA glycosylase involved in the removal of this oxidized base. The S3 ribosomal/repair protein from Drosophila melanogaster (dS3) is endowed with a potent 8-oxoG glycolytic activity coupled with a beta, delta-AP lyase. In vitro repair experiments have shown that pure GST-tagged dS3 can stimulate a > 40-fold increase in the rate of 8-oxoG repair by human cell extracts. In this study, we expressed dS3 fused to the Enhanced Green Fluorescent Protein (EGFP) in T24 human bladder cells in order to accelerate the repair of 8-oxoG in vivo. Limiting dilution and Fluorescence-Activated Cell Sorting (FACS) were used in an effort to isolate cells with elevated EGFP-dS3 expression; however, the cells that were isolated invariably had severe growth impairment. Curiously, EGFP-dS3 expression was slightly increased after recovering cells from liquid nitrogen, but it was not possible under those conditions to achieve a significant acceleration of 8-oxoG repair. The data confirm and extend our previous results obtained with Chinese hamster CHO cells and indicate that elevated expression of dS3 may be toxic to at least some types of mammalian cells, thus limiting its use in vivo as a protective factor against oxidative DNA damage.


Assuntos
Reparo do DNA/fisiologia , Guanina/análogos & derivados , Proteínas Ribossômicas/biossíntese , Neoplasias da Bexiga Urinária/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Guanina/metabolismo , Humanos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Ribossômicas/genética , Transfecção , Neoplasias da Bexiga Urinária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA