Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 79: 101859, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142971

RESUMO

BACKGROUND: Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. METHODS: We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca2+ kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tvHeLa). RESULTS: Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca2+ concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to ß-adrenergic stimulation. CONCLUSIONS: Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca2+ kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Ataxia Cerebelar , Células-Tronco Pluripotentes Induzidas , Maleatos , Erros Inatos do Metabolismo , Humanos , Trifosfato de Adenosina/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Células HeLa , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Respiração
2.
Stem Cell Res ; 73: 103240, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37995437

RESUMO

Arrhythmogenic cardiomyopathy (ACM) represents the cardiac phenotype of Naxos disease, an autosomal recessive disease with an additional cutaneous phenotype. ACM is mainly caused by mutated desmosomal proteins, which are part of cardiac adherens junctions and provide mechanical and electrical stability. Here, we generated a knock-out (KO) of the junctional protein Plakoglobin (JUP-KO; JMUi001-A-4) using the CRISPR/Cas9 system in healthy control induced pluripotent stem cells (iPSCs, (JMUi001-A). JUP-KO iPSCs maintained pluripotency, differentiation potential and genomic integrity and provide an in vitro system modelling ACM when differentiated into cardiomyocytes.


Assuntos
Displasia Arritmogênica Ventricular Direita , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas/genética , gama Catenina/genética , gama Catenina/metabolismo , Displasia Arritmogênica Ventricular Direita/genética , Miócitos Cardíacos/metabolismo , Fenótipo
3.
J Cardiovasc Transl Res ; 16(6): 1276-1286, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37418234

RESUMO

The presence of multiple pathogenic variants in desmosomal genes (DSC2, DSG2, DSP, JUP, and PKP2) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) has been linked to a severe phenotype. However, the pathogenicity of variants is reclassified frequently, which may result in a changed clinical risk prediction. Here, we present the collection, reclassification, and clinical outcome correlation for the largest series of ARVC patients carrying multiple desmosomal pathogenic variants to date (n = 331). After reclassification, only 29% of patients remained carriers of two (likely) pathogenic variants. They reached the composite endpoint (ventricular arrhythmias, heart failure, and death) significantly earlier than patients with one or no remaining reclassified variant (hazard ratios of 1.9 and 1.8, respectively). Periodic reclassification of variants contributes to more accurate risk stratification and subsequent clinical management strategy. Graphical Abstract.


Assuntos
Displasia Arritmogênica Ventricular Direita , Humanos , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/genética , Placofilinas/genética , Fenótipo , Arritmias Cardíacas , Mutação
4.
JCI Insight ; 8(6)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36795511

RESUMO

Arrhythmogenic cardiomyopathy (AC) is a familial heart disease partly caused by impaired desmosome turnover. Thus, stabilization of desmosome integrity may provide new treatment options. Desmosomes, apart from cellular cohesion, provide the structural framework of a signaling hub. Here, we investigated the role of the epidermal growth factor receptor (EGFR) in cardiomyocyte cohesion. We inhibited EGFR under physiological and pathophysiological conditions using the murine plakoglobin-KO AC model, in which EGFR was upregulated. EGFR inhibition enhanced cardiomyocyte cohesion. Immunoprecipitation showed an interaction of EGFR and desmoglein 2 (DSG2). Immunostaining and atomic force microscopy (AFM) revealed enhanced DSG2 localization and binding at cell borders upon EGFR inhibition. Enhanced area composita length and desmosome assembly were observed upon EGFR inhibition, confirmed by enhanced DSG2 and desmoplakin (DP) recruitment to cell borders. PamGene Kinase assay performed in HL-1 cardiomyocytes treated with erlotinib, an EGFR inhibitor, revealed upregulation of Rho-associated protein kinase (ROCK). Erlotinib-mediated desmosome assembly and cardiomyocyte cohesion were abolished upon ROCK inhibition. Thus, inhibiting EGFR and, thereby, stabilizing desmosome integrity via ROCK might provide treatment options for AC.


Assuntos
Desmossomos , Miócitos Cardíacos , Animais , Camundongos , Adesão Celular/fisiologia , Desmogleína 2/metabolismo , Desmossomos/metabolismo , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Miócitos Cardíacos/metabolismo , Quinases Associadas a rho/metabolismo
6.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594662

RESUMO

Desmosome diseases are caused by dysfunction of desmosomes, which anchor intermediate filaments (IFs) at sites of cell-cell adhesion. For many decades, the focus of attention has been on the role of actin filament-associated adherens junctions in development and disease, especially cancer. However, interference with the function of desmosomes, their molecular constituents or their attachments to IFs has now emerged as a major contributor to a variety of diseases affecting different tissues and organs including skin, heart and the digestive tract. The first Alpine desmosome disease meeting (ADDM) held in Grainau, Germany, in October 2022 brought together international researchers from the basic sciences with clinical experts from diverse fields to share and discuss their ideas and concepts on desmosome function and dysfunction in the different cell types involved in desmosome diseases. Besides the prototypic desmosomal diseases pemphigus and arrhythmogenic cardiomyopathy, the role of desmosome dysfunction in inflammatory bowel diseases and eosinophilic esophagitis was discussed.


Assuntos
Desmossomos , Doença , Humanos , Adesão Celular , Desmossomos/fisiologia , Pênfigo
7.
Tissue Barriers ; 11(4): 2138061, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280901

RESUMO

Previous data provided evidence for a critical role of desmosomes to stabilize intestinal epithelial barrier (IEB) function. These studies suggest that desmosomes not only contribute to intercellular adhesion but also play a role as signaling hubs. The contribution of desmosomal plaque proteins plakophilins (PKP) in the intestinal epithelium remains unexplored. The intestinal expression of PKP2 and PKP3 was verified in human gut specimens, human intestinal organoids as well as in Caco2 cells whereas PKP1 was not detected. Knock-down of PKP2 using siRNA in Caco2 cells resulted in loss of intercellular adhesion and attenuated epithelial barrier. This was paralleled by changes of the whole desmosomal complex, including loss of desmoglein2, desmocollin2, plakoglobin and desmoplakin. In addition, tight junction proteins claudin1 and claudin4 were reduced following the loss of PKP2. Interestingly, siRNA-induced loss of PKP3 did not change intercellular adhesion and barrier function in Caco2 cells, while siRNA-induced loss of both PKP2 and PKP3 augmented the changes observed for reduced PKP2 alone. Moreover, loss of PKP2 and PKP2/3, but not PKP3, resulted in reduced activity levels of protein kinase C (PKC). Restoration of PKC activity using Phorbol 12-myristate 13-acetate (PMA) rescued loss of intestinal barrier function and attenuated the reduced expression patterns of claudin1 and claudin4. Immunostaining, proximity ligation assays and co-immunoprecipitation revealed a direct interaction between PKP2 and PKC. In summary, our in vitro data suggest that PKP2 plays a critical role for intestinal barrier function by providing a signaling hub for PKC-mediated expression of tight junction proteins claudin1 and claudin4.


Assuntos
Desmossomos , Placofilinas , Humanos , Células CACO-2 , Moléculas de Adesão Celular/metabolismo , Claudina-4/metabolismo , Desmossomos/metabolismo , Placofilinas/genética , Placofilinas/metabolismo , Proteína Quinase C/metabolismo , RNA Interferente Pequeno/metabolismo
8.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076925

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease caused by heterozygous missense mutations within the gene encoding for the nuclear envelope protein transmembrane protein 43 (TMEM43). The disease is characterized by myocyte loss and fibro-fatty replacement, leading to life-threatening ventricular arrhythmias and sudden cardiac death. However, the role of TMEM43 in the pathogenesis of ACM remains poorly understood. In this study, we generated cardiomyocyte-restricted transgenic zebrafish lines that overexpress eGFP-linked full-length human wild-type (WT) TMEM43 and two genetic variants (c.1073C>T, p.S358L; c.332C>T, p.P111L) using the Tol2-system. Overexpression of WT and p.P111L-mutant TMEM43 was associated with transcriptional activation of the mTOR pathway and ribosome biogenesis, and resulted in enlarged hearts with cardiomyocyte hypertrophy. Intriguingly, mutant p.S358L TMEM43 was found to be unstable and partially redistributed into the cytoplasm in embryonic and adult hearts. Moreover, both TMEM43 variants displayed cardiac morphological defects at juvenile stages and ultrastructural changes within the myocardium, accompanied by dysregulated gene expression profiles in adulthood. Finally, CRISPR/Cas9 mutants demonstrated an age-dependent cardiac phenotype characterized by heart enlargement in adulthood. In conclusion, our findings suggest ultrastructural remodeling and transcriptomic alterations underlying the development of structural and functional cardiac defects in TMEM43-associated cardiomyopathy.


Assuntos
Displasia Arritmogênica Ventricular Direita , Proteínas de Membrana , Miocárdio , Adulto , Animais , Displasia Arritmogênica Ventricular Direita/genética , Heterozigoto , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Miocárdio/metabolismo , Miocárdio/patologia , Peixe-Zebra/genética
9.
Curr Heart Fail Rep ; 18(6): 378-390, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34478111

RESUMO

PURPOSE OF REVIEW: Arrhythmogenic cardiomyopathy (ACM) is a genetic disease characterized by life-threatening ventricular arrhythmias and sudden cardiac death (SCD) in apparently healthy young adults. Mutations in genes encoding for cellular junctions can be found in about half of the patients. However, disease onset and severity, risk of arrhythmias, and outcome are highly variable and drug-targeted treatment is currently unavailable. RECENT FINDINGS: This review focuses on advances in clinical risk stratification, genetic etiology, and pathophysiological concepts. The desmosome is the central part of the disease, but other intercalated disc and associated structural proteins not only broaden the genetic spectrum but also provide novel molecular and cellular insights into the pathogenesis of ACM. Signaling pathways and the role of inflammation will be discussed and targets for novel therapeutic approaches outlined. Genetic discoveries and experimental-driven preclinical research contributed significantly to the understanding of ACM towards mutation- and pathway-specific personalized medicine.


Assuntos
Displasia Arritmogênica Ventricular Direita , Insuficiência Cardíaca , Arritmias Cardíacas/genética , Displasia Arritmogênica Ventricular Direita/genética , Morte Súbita Cardíaca/etiologia , Humanos , Mutação
10.
Auton Neurosci ; 235: 102871, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34474354

RESUMO

Vasovagal syncope may have a genetic predisposition. It has a high prevalence in some families, and children of a fainting parent are more likely to faint than those without a parent who faints. Having two fainting parents or a fainting twin increases the likelihood even further. Several genotypes appear to associate with the phenotype of positive tilt tests, but the control subjects are usually those who faint and have negative tilt tests. Twin studies, highly focused genome-wide association studies, and copy number variation studies all suggest there are loci in the genome that associate with vasovagal syncope, although the specific genes, pathways, and proteins are unknown. A recent multigenerational kindred candidate gene study identified 3 genes that associate with vasovagal syncope. The best evidence to date is for central signaling genes involving serotonin and dopamine. Genome-wide association studies to date have not yet been helpful. Our understanding of the genetic correlates of vasovagal syncope leaves ample opportunity for future work.


Assuntos
Síncope Vasovagal , Variações do Número de Cópias de DNA , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Humanos , Síncope Vasovagal/genética , Teste da Mesa Inclinada
11.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917638

RESUMO

About 50% of patients with arrhythmogenic cardiomyopathy (ACM) carry a pathogenic or likely pathogenic mutation in the desmosomal genes. However, there is a significant number of patients without positive familial anamnesis. Therefore, the molecular reasons for ACM in these patients are frequently unknown and a genetic contribution might be underestimated. Here, we used a next-generation sequencing (NGS) approach and in addition single nucleotide polymor-phism (SNP) arrays for the genetic analysis of two independent index patients without familial medical history. Of note, this genetic strategy revealed a homozygous splice site mutation (DSG2-c.378+1G>T) in the first patient and a nonsense mutation (DSG2-p.L772X) in combination with a large deletion in DSG2 in the second one. In conclusion, a recessive inheritance pattern is likely for both cases, which might contribute to the hidden medical history in both families. This is the first report about these novel loss-of-function mutations in DSG2 that have not been previously identi-fied. Therefore, we suggest performing deep genetic analyses using NGS in combination with SNP arrays also for ACM index patients without obvious familial medical history. In the future, this finding might has relevance for the genetic counseling of similar cases.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Desmogleína 2/genética , Hemizigoto , Homozigoto , Mutação com Perda de Função , Polimorfismo de Nucleotídeo Único , Displasia Arritmogênica Ventricular Direita/diagnóstico por imagem , Feminino , Humanos , Masculino
12.
Stem Cell Res ; 53: 102256, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33640690

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is characterized by fibro-fatty replacement of the myocardium, heart failure and life-threatening ventricular arrhythmias. Causal mutations were identified in genes encoding for proteins of the desmosomes, predominantly plakophilin-2 (PKP2) and desmoglein-2 (DSG2). We generated gene-edited knock-out iPSC lines for PKP2 (JMUi001-A-2) and DSG2 (JMUi001-A-3) using the CRISPR/Cas9 system in a healthy control iPSC background (JMUi001-A). Stem cell-like morphology, robust expression of pluripotency markers, embryoid body formation and normal karyotypes confirmed the generation of high quality iPSCs to provide a novel isogenic human in vitro model system mimicking ACM when differentiated into cardiomyocytes.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Sistemas CRISPR-Cas/genética , Cardiomiopatias/genética , Desmogleína 2/genética , Desmogleína 2/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Placofilinas/genética
13.
J Mol Cell Cardiol ; 141: 17-29, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32201174

RESUMO

AIMS: We aimed to unravel the genetic, molecular and cellular pathomechanisms of DSC2 truncation variants leading to arrhythmogenic cardiomyopathy (ACM). METHODS AND RESULTS: We report a homozygous 4-bp DSC2 deletion variant c.1913_1916delAGAA, p.Q638LfsX647hom causing a frameshift carried by an ACM patient. Whole exome sequencing and comparative genomic hybridization analysis support a loss of heterozygosity in a large segment of chromosome 18 indicating segmental interstitial uniparental isodisomy (UPD). Ultrastructural analysis of the explanted myocardium from a mutation carrier using transmission electron microscopy revealed a partially widening of the intercalated disc. Using qRT-PCR we demonstrated that DSC2 mRNA expression was substantially decreased in the explanted myocardial tissue of the homozygous carrier compared to controls. Western blot analysis revealed absence of both full-length desmocollin-2 isoforms. Only a weak expression of the truncated form of desmocollin-2 was detectable. Immunohistochemistry showed that the truncated form of desmocollin-2 did not localize at the intercalated discs. In vitro, transfection experiments using induced pluripotent stem cell derived cardiomyocytes and HT-1080 cells demonstrated an obvious absence of the mutant truncated desmocollin-2 at the plasma membrane. Immunoprecipitation in combination with fluorescence measurements and Western blot analyses revealed an abnormal secretion of the truncated desmocollin-2. CONCLUSION: In summary, we unraveled segmental UPD as the likely genetic reason for a small homozygous DSC2 deletion. We conclude that a combination of nonsense mediated mRNA decay and extracellular secretion is involved in DSC2 related ACM.


Assuntos
Arritmias Cardíacas/genética , Cardiomiopatias/genética , Desmocolinas/genética , Deleção de Genes , Dissomia Uniparental/genética , Sequência de Aminoácidos , Arritmias Cardíacas/complicações , Sequência de Bases , Cardiomiopatias/complicações , Linhagem Celular Tumoral , Desmocolinas/química , Desmocolinas/metabolismo , Feminino , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Miocárdio/patologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/metabolismo , Linhagem
14.
Mol Pharmacol ; 96(2): 259-271, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31182542

RESUMO

Abnormal cardiac electrical activity is a common side effect caused by unintended block of the promiscuous drug target human ether-à-go-go-related gene (hERG1), the pore-forming domain of the delayed rectifier K+ channel in the heart. hERG1 block leads to a prolongation of the QT interval, a phase of the cardiac cycle that underlies myocyte repolarization detectable on the electrocardiogram. Even newly released drugs such as heart-rate lowering agent ivabradine block the rapid delayed rectifier current IKr, prolong action potential duration, and induce potentially lethal arrhythmia known as torsades de pointes. In this study, we describe a critical drug-binding pocket located at the lateral pore surface facing the cellular membrane. Mutations of the conserved M651 residue alter ivabradine-induced block but not by the common hERG1 blocker dofetilide. As revealed by molecular dynamics simulations, binding of ivabradine to a lipophilic pore access site is coupled to a state-dependent reorientation of aromatic residues F557 and F656 in the S5 and S6 helices. We show that the M651 mutation impedes state-dependent dynamics of F557 and F656 aromatic cassettes at the protein-lipid interface, which has a potential to disrupt drug-induced block of the channel. This fundamentally new mechanism coupling the channel dynamics and small-molecule access from the membrane into the hERG1 intracavitary site provides a simple rationale for the well established state-dependence of drug blockade. SIGNIFICANCE STATEMENT: The drug interference with the function of the cardiac hERG channels represents one of the major sources of drug-induced heart disturbances. We found a novel and a critical drug-binding pocket adjacent to a lipid-facing surface of the hERG1 channel, which furthers our molecular understanding of drug-induced QT syndrome.


Assuntos
Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Ivabradina/farmacologia , Lipídeos de Membrana/metabolismo , Sítios de Ligação , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Ivabradina/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Fenetilaminas/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Sulfonamidas/farmacologia
15.
Circ Arrhythm Electrophysiol ; 12(1): e006884, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30636478

RESUMO

BACKGROUND: Several studies suggest that vasovagal syncope has a genetic origin, but this is unclear. We assessed whether plausible gene variants associate with vasovagal syncope. METHODS: We studied 160 subjects in 9 kindreds comprising 82 fainters and 78 controls. The diagnosis was ascertained with the Calgary Syncope Score. Common genetic variants were genotyped for 12 genes for vascular signaling, potassium channels, the HTR1A(serotonin 5-HT1A receptor), SLC6A4(serotonin reuptake transporter), and COMT(catecholamine O-methyltransferase). Sex-specific associations between genotypes and phenotypes were tested. RESULTS: In 9 out of 12 variants, there was no significant association between genotype and phenotype. However, the HTR1A(-1019) G alleles associated with syncope in males, but not in females ( P=0.005). CC and GG males had 9% versus 77% likelihoods of syncope. The SLC6A4 promoter L alleles associated with decreased syncope in males but increased in females ( P=0.059). The LL and SS males had 25% and 47% syncope likelihoods, whereas females had 75% and 50% syncope likelihoods. The COMT c.472 A alleles associated with decreased syncope in males but increased in females ( P=0.017). The GG and AA males had 50% and 15% syncope likelihoods, whereas females had 52% and 73% syncope likelihoods. CONCLUSIONS: There is a sex-dependent effect of alleles of serotonin signaling and vasovagal syncope, supporting the serotonin hypothesis of the physiology of vasovagal syncope.


Assuntos
Catecol O-Metiltransferase/genética , Polimorfismo de Nucleotídeo Único , Receptor 5-HT1A de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Síncope Vasovagal/genética , Adulto , Alberta , Estudos de Casos e Controles , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Hereditariedade , Humanos , Masculino , Linhagem , Fenótipo , Medição de Risco , Fatores de Risco , Fatores Sexuais , Síncope Vasovagal/diagnóstico , Síncope Vasovagal/fisiopatologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-28794082

RESUMO

BACKGROUND: Insight into type 6 long-QT syndrome (LQT6), stemming from mutations in the KCNE2-encoded voltage-gated channel ß-subunit, is limited. We sought to further characterize its clinical phenotype. METHODS AND RESULTS: Individuals with reported pathogenic KCNE2 mutations identified during arrhythmia evaluation were collected from inherited arrhythmia clinics and the Rochester long-QT syndrome (LQTS) registry. Previously reported LQT6 cases were identified through a search of the MEDLINE database. Clinical features were assessed, while reported KCNE2 mutations were evaluated for genotype-phenotype segregation and classified according to the contemporary American College of Medical Genetics guidelines. Twenty-seven probands possessed reported pathogenic KCNE2 mutations, while a MEDLINE search identified 17 additional LQT6 cases providing clinical and genetic data. Sixteen probands had normal resting QTc values and only developed QT prolongation and malignant arrhythmias after exposure to QT-prolonging stressors, 10 had other LQTS pathogenic mutations, and 10 did not have an LQTS phenotype. Although the remaining 8 subjects had an LQTS phenotype, evidence suggested that the KCNE2 variant was not the underlying culprit. The collective frequency of KCNE2 variants implicated in LQT6 in the Exome Aggregation Consortium database was 1.4%, in comparison with a 0.0005% estimated clinical prevalence for LQT6. CONCLUSIONS: On the basis of clinical phenotype, the high allelic frequencies of LQT6 mutations in the Exome Aggregation Consortium database, and absence of previous documentation of genotype-phenotype segregation, our findings suggest that many KCNE2 variants, and perhaps all, have been erroneously designated as LQTS-causative mutations. Instead, KCNE2 variants may confer proarrhythmic susceptibility when provoked by additional environmental/acquired or genetic factors, or both.


Assuntos
Síndrome do QT Longo/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Síndrome do QT Longo/classificação , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo
17.
Can J Cardiol ; 32(12): 1396-1401, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27474350

RESUMO

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a complex and clinically heterogeneous arrhythmic condition. Incomplete penetrance and variable expressivity are particularly evident in ARVC, making clinical decision-making challenging. METHODS: Pediatric and adult cardiologists, geneticists, genetic counsellors, ethicists, nurses, and qualitative researchers are collaborating to create the Canadian ARVC registry using a web-based clinical database. Biological samples will be banked and systematic analysis will be performed to examine potentially causative mutations, variants, and biomarkers. Outcomes will include syncope, ventricular arrhythmias, defibrillator therapies, heart failure, and mortality. RESULTS: Preliminary recruitment has enrolled 365 participants (aged 42.7 ± 17.1 years; 50% women), including 129 probands and 236 family members. Previous cardiac arrest occurred in 28 (8%) participants, syncope occurred in 43 (12%) participants, and 46% of probands had a family history of sudden death. Overall yield of genetic testing was 36% for a disease-causing mutation and 20% for a variant of unknown significance. Target enrollment is 1000 affected patients and 500 unaffected family member controls over 7 years. The cross-sectional and longitudinal data collected in this manner will allow a robust assessment of the natural history and clinical course of genetic subtypes. CONCLUSIONS: The Canadian ARVC Registry will create a population-based cohort of patients and their families to inform clinical decisions regarding patients with ARVC.


Assuntos
Displasia Arritmogênica Ventricular Direita , Morte Súbita Cardíaca , Administração dos Cuidados ao Paciente , Equipe de Assistência ao Paciente/organização & administração , Taquicardia Ventricular , Adulto , Displasia Arritmogênica Ventricular Direita/complicações , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/epidemiologia , Displasia Arritmogênica Ventricular Direita/genética , Canadá/epidemiologia , Morte Súbita Cardíaca/epidemiologia , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Desmocolinas/genética , Feminino , Testes Genéticos/estatística & dados numéricos , Testes de Função Cardíaca/métodos , Testes de Função Cardíaca/estatística & dados numéricos , Ventrículos do Coração/diagnóstico por imagem , Humanos , Comunicação Interdisciplinar , Colaboração Intersetorial , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Administração dos Cuidados ao Paciente/métodos , Administração dos Cuidados ao Paciente/organização & administração , Sistema de Registros/estatística & dados numéricos , Medição de Risco/métodos , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/mortalidade
18.
EMBO Mol Med ; 7(5): 562-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25759365

RESUMO

Frameshift mutations in the TTN gene encoding titin are a major cause for inherited forms of dilated cardiomyopathy (DCM), a heart disease characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure. To date, there are no specific treatment options for DCM patients but heart transplantation. Here, we show the beneficial potential of reframing titin transcripts by antisense oligonucleotide (AON)-mediated exon skipping in human and murine models of DCM carrying a previously identified autosomal-dominant frameshift mutation in titin exon 326. Correction of TTN reading frame in patient-specific cardiomyocytes derived from induced pluripotent stem cells rescued defective myofibril assembly and stability and normalized the sarcomeric protein expression. AON treatment in Ttn knock-in mice improved sarcomere formation and contractile performance in homozygous embryos and prevented the development of the DCM phenotype in heterozygous animals. These results demonstrate that disruption of the titin reading frame due to a truncating DCM mutation can be restored by exon skipping in both patient cardiomyocytes in vitro and mouse heart in vivo, indicating RNA-based strategies as a potential treatment option for DCM.


Assuntos
Cardiomiopatia Dilatada/fisiopatologia , Conectina/metabolismo , Éxons , Mutação da Fase de Leitura , Regulação da Expressão Gênica/efeitos dos fármacos , Oligonucleotídeos Antissenso/metabolismo , Animais , Cardiomiopatia Dilatada/terapia , Células Cultivadas , Conectina/genética , Técnicas Citológicas , Modelos Animais de Doenças , Terapia Genética/métodos , Humanos , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Miofibrilas/metabolismo , Miofibrilas/fisiologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico
19.
J Am Heart Assoc ; 3(6): e001407, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25497880

RESUMO

BACKGROUND: The p.Gln554X mutation in desmocollin-2 (DSC2) is prevalent in ≈10% of the Hutterite population. While the homozygous mutation causes severe biventricular arrhythmogenic right ventricular cardiomyopathy, the phenotypic features and prognosis of heterozygotes remain incompletely understood. METHODS AND RESULTS: Eleven homozygotes (mean age 32±8 years, 45% female), 28 heterozygotes (mean age 40±15 years, 50% female), and 22 mutation-negatives (mean age 43±17 years, 41% female) were examined. Diagnostic testing was performed as per the arrhythmogenic right ventricular cardiomyopathy modified Task Force Criteria. Inverted T waves in the right precordial leads on ECG were seen in all homozygotes but not in their counterparts (P<0.001). Homozygotes had higher median daily premature ventricular complex burden than did heterozygotes or mutation-negatives (1407 [IQR 1080 to 2936] versus 2 [IQR 0 to 6] versus 6 [IQR 0 to 214], P=0.0002). Ventricular tachycardia was observed in 60% of homozygotes but in none of the remaining individuals (P<0.001). On cardiac magnetic resonance imaging, homozygotes had significantly larger indexed end-diastolic volumes (right ventricular: 122±24 versus 83±17 versus 83±12 mL/m(2), P<0.0001; left ventricular: 93±18 versus 76±13 versus 80±11 mL/m(2), P=0.0124) and lower ejection fraction values compared with heterozygotes and mutation-negatives (right ventricular ejection fraction: 41±9% versus 59±9% versus 61±6%, P<0.0001; left ventricular ejection fraction: 53±8% versus 65±5% versus 64±5%, P<0.0001). Most affected individuals lacked right ventricular wall motion abnormalities. Thus, few met cardiac magnetic resonance imaging task force criteria. CONCLUSIONS: The ECG reliably identifies homozygous p.Gln554X carriers and may be useful as an initial step in the screening of high-risk Hutterites. The cardiac phenotype of heterozygotes appears benign, but further prospective follow-up of their arrhythmic risk is needed.


Assuntos
Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/genética , Desmocolinas/genética , Eletrocardiografia , Etnicidade/genética , Mutação , Adolescente , Adulto , Alberta/epidemiologia , Displasia Arritmogênica Ventricular Direita/etnologia , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Análise Mutacional de DNA , Morte Súbita Cardíaca/etnologia , Feminino , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Volume Sistólico , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/etnologia , Taquicardia Ventricular/genética , Função Ventricular Esquerda , Função Ventricular Direita , Complexos Ventriculares Prematuros/diagnóstico , Complexos Ventriculares Prematuros/etnologia , Complexos Ventriculares Prematuros/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA