Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 12(11): 1773-1782, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34795867

RESUMO

CXCL12, a CXC-type chemokine, binds its receptor CXCR4, and the resulting signaling cascade is essential during development and subsequently in immune function. Pathologically, the CXCL12-CXCR4 signaling axis is involved in many cancers and inflammatory diseases and thus has sparked continued interest in the development of therapeutics. Small molecules targeting CXCR4 have had mixed results in clinical trials. Alternatively, small molecules targeting the chemokine instead of the receptor provide a largely unexplored space for therapeutic development. Here we report that trisubstituted 1,3,5-triazines are competent ligands for the sY12-binding pocket of CXCL12. The initial hit was optimized to be more synthetically tractable. Fifty unique triazines were synthesized, and the structure-activity relationship was probed. Using computational modeling, we suggest key structural interactions that are responsible for ligand-chemokine binding. The lipophilic ligand efficiency was improved, resulting in more soluble, drug-like molecules with chemical handles for future development and structural studies.

2.
Arthritis Rheumatol ; 73(12): 2271-2281, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34081845

RESUMO

OBJECTIVE: To assess the involvement of the CCR6/CCL20 axis in psoriatic arthritis (PsA) and psoriasis (PsO) and to evaluate its potential as a therapeutic target. METHODS: First, we quantified CCL20 levels in peripheral blood and synovial fluid from PsA patients and examined the presence of CCR6+ cells in synovial and tendon tissue. Utilizing an interleukin-23 minicircle DNA (IL-23 MC) mouse model exhibiting key features of both PsO and PsA, we investigated CCR6 and CCL20 expression as well as the preventive and therapeutic effect of CCL20 blockade. Healthy tendon stromal cells were stimulated in vitro with IL-1ß to assess the production of CCL20 by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The effect of conditioned media from stimulated tenocytes in inducing T cell migration was interrogated using a Transwell system. RESULTS: We observed an up-regulation of both CCR6 and CCL20 in the enthesis of IL-23 MC-treated mice, which was confirmed in human biopsy specimens. Specific targeting of the CCR6/CCL20 axis with a CCL20 locked dimer (CCL20LD) blocked entheseal inflammation, leading to profound reductions in clinical and proinflammatory markers in the joints and skin of IL-23 MC-treated mice. The stromal compartment in the tendon was the main source of CCL20 in this model and, accordingly, in vitro activated human tendon cells were able to produce this chemokine and to induce CCR6+ T cell migration, the latter of which could be blocked by CCL20LD. CONCLUSION: Our study highlights the pathogenic role of the CCR6/CCL20 axis in enthesitis and introduces the prospect of a novel therapeutic approach for treating patients with PsO and PsA.


Assuntos
Artrite Psoriásica/metabolismo , Quimiocina CCL20/sangue , Inflamação/metabolismo , Líquido Sinovial/metabolismo , Animais , Artrite Psoriásica/sangue , Humanos , Inflamação/sangue , Interleucina-1beta/farmacologia , Interleucina-23/farmacologia , Camundongos , Pele/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Membrana Sinovial/metabolismo , Tendões/efeitos dos fármacos , Tendões/metabolismo
3.
Int J Mol Sci ; 18(9)2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28841151

RESUMO

Chemokines are secreted proteins that direct the migration of immune cells and are involved in numerous disease states. For example, CCL21 (CC chemokine ligand 21) and CCL19 (CC chemokine ligand 19) recruit antigen-presenting dendritic cells and naïve T-cells to the lymph nodes and are thought to play a role in lymph node metastasis of CCR7 (CC chemokine receptor 7)-expressing cancer cells. For many chemokine receptors, N-terminal posttranslational modifications, particularly the sulfation of tyrosine residues, increases the affinity for chemokine ligands and may contribute to receptor ligand bias. Chemokine sulfotyrosine (sY) binding sites are also potential targets for drug development. In light of the structural similarity between sulfotyrosine and phosphotyrosine (pY), the interactions of CCL21 with peptide fragments of CCR7 containing tyrosine, pY, or sY were compared using protein NMR (nuclear magnetic resonance) spectroscopy in this study. Various N-terminal CCR7 peptides maintain binding site specificity with Y8-, pY8-, or sY8-containing peptides binding near the α-helix, while Y17-, pY17-, and sY17-containing peptides bind near the N-loop and ß3-stand of CCL21. All modified CCR7 peptides showed enhanced binding affinity to CCL21, with sY having the largest effect.


Assuntos
Quimiocina CCL21/metabolismo , Receptores CCR7/metabolismo , Tirosina/análogos & derivados , Sequência de Aminoácidos , Sítios de Ligação , Quimiocina CCL21/química , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Peptídeos/química , Peptídeos/metabolismo , Fosfotirosina , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Receptores CCR7/química , Tirosina/química , Tirosina/metabolismo
4.
Mol Carcinog ; 56(3): 804-813, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27648825

RESUMO

As knowledge of growth-independent functions of cancer cells is expanding, exploration into the role of chemokines in modulating cancer pathogenesis, particularly metastasis, continues to develop. However, more study into the mechanisms whereby chemokines direct the migration of cancer cells is needed before specific therapies can be generated to target metastasis. Herein, we draw attention to the longstanding conundrum in the field of chemokine biology that chemokines stimulate migration in a biphasic manner; and explore this phenomenon's impact on chemokine function in the context of cancer. Typically, low concentrations of chemokines lead to chemotactic migration and higher concentrations halt migration. The signaling mechanisms that govern this phenomenon remain unclear. Over the last decade, we have defined a novel signaling mechanism for regulation of chemokine migration through ligand oligomerization and biased agonist signaling. We provide insight into this new paradigm for chemokine signaling and discuss how it will impact future exploration into chemokine function and biology. In the pursuit of producing more novel cancer therapies, we suggest a framework for pharmaceutical application of the principles of chemokine oligomerization and biased agonist signaling in cancer. © 2016 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/farmacologia , Quimiocinas/agonistas , Neoplasias/tratamento farmacológico , Receptores Acoplados a Proteínas G/metabolismo , Animais , Antineoplásicos/uso terapêutico , Movimento Celular/efeitos dos fármacos , Quimiocinas/química , Progressão da Doença , Humanos , Modelos Moleculares , Neoplasias/imunologia , Neoplasias/patologia , Multimerização Proteica , Transdução de Sinais/efeitos dos fármacos
5.
J Med Chem ; 59(9): 4342-51, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27058821

RESUMO

CXCL12 is a human chemokine that recognizes the CXCR4 receptor and is involved in immune responses and metastatic cancer. Interactions between CXCL12 and CXCR4 are an important drug target but, like other elongated protein-protein interfaces, present challenges for small molecule ligand discovery due to the relatively shallow and featureless binding surfaces. Calculations using an NMR complex structure revealed a binding hot spot on CXCL12 that normally interacts with the I4/I6 residues from CXCR4. Virtual screening was performed against the NMR model, and subsequent testing has verified the specific binding of multiple docking hits to this site. Together with our previous results targeting two other binding pockets that recognize sulfotyrosine residues (sY12 and sY21) of CXCR4, including a new analog against the sY12 binding site reported herein, we demonstrate that protein-protein interfaces can often possess multiple sites for engineering specific small molecule ligands that provide lead compounds for subsequent optimization by fragment based approaches.


Assuntos
Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Sítios de Ligação , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular
6.
Cancer Res ; 75(17): 3529-42, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26330165

RESUMO

Patients with pancreatic ductal adenocarcinoma (PDAC) invariably succumb to metastatic disease, but the underlying mechanisms that regulate PDAC cell movement and metastasis remain little understood. In this study, we investigated the effects of the chemokine gene CXCL12, which is silenced in PDAC tumors, yet is sufficient to suppress growth and metastasis when re-expressed. Chemokines like CXCL12 regulate cell movement in a biphasic pattern, with peak migration typically in the low nanomolar concentration range. Herein, we tested the hypothesis that the biphasic cell migration pattern induced by CXCL12 reflected a biased agonist bioenergetic signaling that might be exploited to interfere with PDAC metastasis. In human and murine PDAC cell models, we observed that nonmigratory doses of CXCL12 were sufficient to decrease oxidative phosphorylation and glycolytic capacity and to increase levels of phosphorylated forms of the master metabolic kinase AMPK. Those same doses of CXCL12 locked myosin light chain into a phosphorylated state, thereby decreasing F-actin polymerization and preventing cell migration in a manner dependent upon AMPK and the calcium-dependent kinase CAMKII. Notably, at elevated concentrations of CXCL12 that were insufficient to trigger chemotaxis of PDAC cells, AMPK blockade resulted in increased cell movement. In two preclinical mouse models of PDAC, administration of CXCL12 decreased tumor dissemination, supporting our hypothesis that chemokine-biased agonist signaling may offer a useful therapeutic strategy. Our results offer a mechanistic rationale for further investigation of CXCL12 as a potential therapy to prevent or treat PDAC metastasis.


Assuntos
Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Quimiocina CXCL12/administração & dosagem , Proteínas Quinases/biossíntese , Quinases Proteína-Quinases Ativadas por AMP , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Humanos , Camundongos , Metástase Neoplásica , Fosforilação Oxidativa , Proteínas Quinases/metabolismo
7.
J Med Chem ; 57(22): 9693-9, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25356720

RESUMO

CXCL12 binds to CXCR4, promoting both chemotaxis of lymphocytes and metastasis of cancer cells. We previously identified small molecule ligands that bind CXCL12 and block CXCR4-mediated chemotaxis. We now report a 1.9 Å resolution X-ray structure of CXCL12 bound by such a molecule at a site normally bound by sY21 of CXCR4. The complex structure reveals binding hot spots for future inhibitor design and suggests a new approach to targeting CXCL12-CXCR4 signaling in drug discovery.


Assuntos
Antineoplásicos/química , Quimiocina CXCL12/química , Cristalografia por Raios X/métodos , Receptores CXCR4/química , Sítios de Ligação , Quimiotaxia , Desenho de Fármacos , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Relação Estrutura-Atividade
8.
ACS Chem Biol ; 8(9): 1955-63, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23802178

RESUMO

Tyrosine sulfation is a post-translational modification that enhances protein-protein interactions and may identify druggable sites in the extracellular space. The G protein-coupled receptor CXCR4 is a prototypical example with three potential sulfation sites at positions 7, 12, and 21. Each receptor sulfotyrosine participates in specific contacts with its chemokine ligand in the structure of a soluble, dimeric CXCL12:CXCR4(1-38) complex, but their relative importance for CXCR4 binding and activation by the monomeric chemokine remains undefined. NMR titrations with short sulfopeptides showed that the tyrosine motifs of CXCR4 varied widely in their contributions to CXCL12 binding affinity and site specificity. Whereas the Tyr21 sulfopeptide bound the same site as in previously solved structures, the Tyr7 and Tyr12 sulfopeptides interacted nonspecifically. Surprisingly, the unsulfated Tyr7 peptide occupied a hydrophobic site on the CXCL12 monomer that is inaccessible in the CXCL12 dimer. Functional analysis of CXCR4 mutants validated the relative importance of individual CXCR4 sulfotyrosine modifications (Tyr21 > Tyr12 > Tyr7) for CXCL12 binding and receptor activation. Biophysical measurements also revealed a cooperative relationship between sulfopeptide binding at the Tyr21 site and CXCL12 dimerization, the first example of allosteric behavior in a chemokine. Future ligands that occupy the sTyr21 recognition site may act as both competitive inhibitors of receptor binding and allosteric modulators of chemokine function. Together, our data suggests that sulfation does not ubiquitously enhance complex affinity and that distinct patterns of tyrosine sulfation could encode oligomer selectivity, implying another layer of regulation for chemokine signaling.


Assuntos
Quimiocina CXCL12/metabolismo , Peptídeos/metabolismo , Receptores CXCR4/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Quimiocina CXCL12/química , Cricetulus , Humanos , Modelos Moleculares , Peptídeos/química , Ligação Proteica , Multimerização Proteica , Receptores CXCR4/química , Tirosina/química , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA