Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1937: 3-26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30706387

RESUMO

Today any researcher with the desire can easily purchase a viral vector. However, despite the availability of viral vectors themselves, the requisite knowledge that is absolutely essential to conducting a gene therapy experiment remains somewhat obscure and esoteric. To utilize viral vectors to their full potential, a large number of decisions must be made, in some instances prior to even obtaining the vector itself. For example, critical decisions include selection of the proper virus, selection of the proper expression cassette, whether to produce or purchase a viral vector, proper viral handling and storage, the most appropriate delivery method, selecting the proper controls, how to ensure your virus is expressing properly, and many other complex decisions that are essential to performing a successful gene therapy experiment. The need to make so many important decisions can be overwhelming and potentially prohibitive, especially to the novice gene therapist. In order to aid in this challenging process, here we provide an overview of basic gene therapy modalities and a decision tree that can be used to make oneself aware of the options available to the beginning gene therapist. This information can be used as a road map to help navigate the complex and perhaps confusing process of designing a successful gene therapy experiment.


Assuntos
Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Adenoviridae/genética , Animais , Tomada de Decisões , Dependovirus/genética , Expressão Gênica , Vetores Genéticos/fisiologia , Humanos , Lentivirus/genética , Simplexvirus
2.
Neurobiol Dis ; 112: 106-118, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29341898

RESUMO

Alpha-Synuclein (α-syn) is by far the most highly vetted pathogenic and therapeutic target in Parkinson's disease. Aggregated α-syn is present in sporadic Parkinson's disease, both in the central nervous system (CNS) and peripheral nervous system (PNS). The enteric division of the PNS is of particular interest because 1) gastric dysfunction is a key clinical manifestation of Parkinson's disease, and 2) Lewy pathology in myenteric and submucosal neurons of the enteric nervous system (ENS) has been referred to as stage zero in the Braak pathological staging of Parkinson's disease. The presence of Lewy pathology in the ENS and the fact that patients often experience enteric dysfunction before the onset of motor symptoms has led to the hypothesis that α-syn pathology starts in the periphery, after which it spreads to the CNS via interconnected neural pathways. Here we sought to directly test this hypothesis in rodents and non-human primates (NHP) using two distinct models of α-syn pathology: the α-syn viral overexpression model and the preformed fibril (PFF) model. Subjects (rat and NHP) received targeted enteric injections of PFFs or adeno-associated virus overexpressing the Parkinson's disease associated A53T α-syn mutant. Rats were evaluated for colonic motility monthly and sacrificed at 1, 6, or 12 months, whereas NHPs were sacrificed 12 months following inoculation, after which the time course and spread of pathology was examined in all animals. Rats exhibited a transient GI phenotype that resolved after four months. Minor α-syn pathology was observed in the brainstem (dorsal motor nucleus of the vagus and locus coeruleus) 1 month after PFF injections; however, no pathology was observed at later time points (nor in saline or monomer treated animals). Similarly, a histopathological analysis of the NHP brains revealed no pathology despite the presence of robust α-syn pathology throughout the ENS which persisted for the entirety of the study (12 months). Our study shows that induction of α-syn pathology in the ENS is sufficient to induce GI dysfunction. Moreover, our data suggest that sustained spread of α-syn pathology from the periphery to the CNS and subsequent propagation is a rare event, and that the presence of enteric α-syn pathology and dysfunction may represent an epiphenomenon.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , Sistema Nervoso Entérico/metabolismo , Gastroenteropatias/metabolismo , Motilidade Gastrointestinal/fisiologia , alfa-Sinucleína/biossíntese , Animais , Doenças do Sistema Nervoso Central/patologia , Sistema Nervoso Entérico/patologia , Gastroenteropatias/patologia , Humanos , Macaca fascicularis , Masculino , Camundongos , Primatas , Ratos , Ratos Sprague-Dawley
3.
Neurology ; 89(8): 762-770, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28747448

RESUMO

OBJECTIVE: To define molecular mechanisms underlying the clinical spectrum of epilepsy and movement disorder in individuals with de novo mutations in the GNAO1 gene. METHODS: We identified all GNAO1 mutations reported in individuals with epilepsy (early infantile epileptiform encephalopathy 17) or movement disorders through April 2016; 15 de novo mutant alleles from 25 individuals were introduced into the Gαo subunit by site-directed mutagenesis in a mammalian expression plasmid. We assessed protein expression and function in vitro in HEK-293T cells by Western blot and determined functional Gαo-dependent cyclic adenosine monophosphate (cAMP) inhibition with a coexpressed α2A adrenergic receptor. RESULTS: Of the 15 clinical GNAO1 mutations studied, 9 show reduced expression and loss of function (LOF; <90% maximal inhibition). Six other mutations show variable levels of expression but exhibit normal or even gain-of-function (GOF) behavior, as demonstrated by significantly lower EC50 values for α2A adrenergic receptor-mediated inhibition of cAMP. The GNAO1 LOF mutations are associated with epileptic encephalopathy while GOF mutants (such as G42R, G203R, and E246K) or normally functioning mutants (R209) were found in patients with movement disorders with or without seizures. CONCLUSIONS: Both LOF and GOF mutations in Gαo (encoded by GNAO1) are associated with neurologic pathophysiology. There appears to be a strong predictive correlation between the in vitro biochemical phenotype and the clinical pattern of epilepsy vs movement disorder.


Assuntos
Epilepsia/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Transtornos dos Movimentos/genética , Mutação , Adolescente , Far-Western Blotting , Criança , Pré-Escolar , AMP Cíclico/metabolismo , Epilepsia/metabolismo , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Lactente , Masculino , Transtornos dos Movimentos/metabolismo , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA