Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36551269

RESUMO

Halogenation of bioactive peptides via incorporation of non-natural amino acid derivatives during chemical synthesis is a common strategy to enhance functionality. Bacterial tyrptophan halogenases efficiently catalyze regiospecific halogenation of the free amino acid tryptophan, both in vitro and in vivo. Expansion of their substrate scope to peptides and proteins would facilitate highly-regulated post-synthesis/expression halogenation. Here, we demonstrate novel in vitro halogenation (chlorination and bromination) of peptides by select halogenase enzymes and identify the C-terminal (G/S)GW motif as a preferred substrate. In a first proof-of-principle experiment, we also demonstrate chemo-catalyzed derivatization of an enzymatically chlorinated peptide, albeit with low efficiency. We further rationally derive PyrH halogenase mutants showing improved halogenation of the (G/S)GW motif, both as a free peptide and when genetically fused to model proteins with efficiencies up to 90%.


Assuntos
Halogenação , Oxirredutases , Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeos/metabolismo , Aminoácidos/metabolismo
2.
Chem Sci ; 13(33): 9739-9748, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091915

RESUMO

Although intracellular biomarkers can be imaged with fluorescent dye(s)-labeled antibodies, the use of such probes for precise imaging of intracellular biomarkers in living cells remains challenging due to background noise from unbound probes. Herein, we describe the development of a conditionally active Fab-type Quenchbody (Q-body) probe derived from a monoclonal antibody (DO-1) with the ability to both target and spatiotemporally visualize intracellular p53 in living cells with low background signal. p53 is a key tumor suppressor and validated biomarker for cancer diagnostics and therapeutics. The Q-body displayed up to 27-fold p53 level-dependent fluorescence enhancement in vitro with a limit of detection of 0.72 nM. In fixed and live cells, 8.3- and 8.4-fold enhancement was respectively observed. Furthermore, we demonstrate live-cell sorting based on p53 expression. This study provides the first evidence of the feasibility and applicability of Q-body probes for the live-cell imaging of intrinsically intracellular proteins and opens a novel avenue for research and diagnostic applications on intracellular target-based live-cell sorting.

3.
Structure ; 30(5): 733-742.e7, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35290795

RESUMO

Disordered proteins pose a major challenge to structural biology. A prominent example is the tumor suppressor p53, whose low expression levels and poor conformational stability hamper the development of cancer therapeutics. All these characteristics make it a prime example of "life on the edge of solubility." Here, we investigate whether these features can be modulated by fusing the protein to a highly soluble spider silk domain (NT∗). The chimeric protein displays highly efficient translation and is fully active in human cancer cells. Biophysical characterization reveals a compact conformation, with the disordered transactivation domain of p53 wrapped around the NT∗ domain. We conclude that interactions with NT∗ help to unblock translation of the proline-rich disordered region of p53. Expression of partially disordered cancer targets is similarly enhanced by NT∗. In summary, we demonstrate that inducing co-translational folding via a molecular "spindle and thread" mechanism unblocks protein translation in vitro.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Ligação Proteica , Domínios Proteicos , Proteína Supressora de Tumor p53/metabolismo
4.
Sci Rep ; 11(1): 10127, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980885

RESUMO

Grafting bioactive peptides into recipient protein scaffolds can often increase their activities by conferring enhanced stability and cellular longevity. Here, we describe use of vGFP as a novel scaffold to display peptides. vGFP comprises GFP fused to a bound high affinity Enhancer nanobody that potentiates its fluorescence. We show that peptides inserted into the linker region between GFP and the Enhancer are correctly displayed for on-target interaction, both in vitro and in live cells by pull-down, measurement of target inhibition and imaging analyses. This is further confirmed by structural studies highlighting the optimal display of a vGFP-displayed peptide bound to Mdm2, the key negative regulator of p53 that is often overexpressed in cancer. We also demonstrate a potential biosensing application of the vGFP scaffold by showing target-dependent modulation of intrinsic fluorescence. vGFP is relatively thermostable, well-expressed and inherently fluorescent. These properties make it a useful scaffold to add to the existing tool box for displaying peptides that can disrupt clinically relevant protein-protein interactions.


Assuntos
Técnicas de Visualização da Superfície Celular , Proteínas de Fluorescência Verde/metabolismo , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Sequência de Aminoácidos , Técnicas Biossensoriais , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Relação Estrutura-Atividade
5.
Nucleic Acids Res ; 48(22): e128, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33104786

RESUMO

Directed evolution methodologies benefit from read-outs quantitatively linking genotype to phenotype. We therefore devised a method that couples protein-peptide interactions to the dynamic read-out provided by an engineered DNA polymerase. Fusion of a processivity clamp protein to a thermostable nucleic acid polymerase enables polymerase activity and DNA amplification in otherwise prohibitive high-salt buffers. Here, we recapitulate this phenotype by indirectly coupling the Sso7d processivity clamp to Taq DNA polymerase via respective fusion to a high affinity and thermostable interacting protein-peptide pair. Escherichia coli cells co-expressing protein-peptide pairs can directly be used in polymerase chain reactions to determine relative interaction strengths by the measurement of amplicon yields. Conditional polymerase activity is further used to link genotype to phenotype of interacting protein-peptide pairs co-expressed in E. coli using the compartmentalized self-replication directed evolution platform. We validate this approach, termed compartmentalized two-hybrid replication, by selecting for high-affinity peptides that bind two model protein partners: SpyCatcher and the large fragment of NanoLuc luciferase. We further demonstrate directed co-evolution by randomizing both protein and peptide components of the SpyCatcher-SpyTag pair and co-selecting for functionally interacting variants.


Assuntos
Evolução Molecular Direcionada , Escherichia coli/genética , Peptídeos/genética , Mapas de Interação de Proteínas/genética , Compartimento Celular/genética , Replicação do DNA/genética , Regulação Bacteriana da Expressão Gênica/genética , Genótipo , Luciferases/genética , Fenótipo , Engenharia de Proteínas , Taq Polimerase/genética
6.
Cancer Res ; 79(14): 3595-3607, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31138526

RESUMO

p53 protein, activated and stabilized by posttranslational modifications, performs its major functions by inducing DNA repair, cell-cycle arrest, or apoptosis through transcriptional activation. Here, we determined the ability of p53 protein stabilized via proteasome inhibition to perform similar functions as p53 induced by stresses such as DNA damage. Treating mice with the proteasome inhibitor bortezomib stabilized p53 in stem/progenitor cells of the intestine and stomach, in other proliferating tissues, and in intestinal tumors. Robust basal p53 mRNA levels were observed in the same compartments where p53 was stabilized. Spatial activation of p53 target genes in response to bortezomib in the small intestine demonstrated that CDKN1A and BAX were upregulated in the proliferative crypts but not in the differentiated villi of the small intestine; PUMA was specifically activated at the crypt base of p53 wild-type mice. Thus, cellular context determines the p53 transcriptional target selection. p53-dependent apoptosis was induced in Lgr5-expressing stem cells of the small intestine and high p53 transcriptional activity and apoptosis was induced in intestinal adenomas and in xenograft tumors. Bortezomib inhibited the growth of intestinal adenomas and xenograft tumors with wild-type p53, indicating the importance of p53 in the response to proteasome inhibitors in tissue homeostasis and in cancer therapy. SIGNIFICANCE: These findings show that bortezomib is less active in p53-defective tumors, yet its success in treating multiple myeloma suggests its use can be extended to p53-proficient solid tumors.


Assuntos
Bortezomib/farmacologia , Neoplasias Colorretais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenoma/tratamento farmacológico , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Células HCT116 , Células HT29 , Humanos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/genética , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Biol Chem ; 294(17): 7002-7012, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30770473

RESUMO

Protein-protein interactions (PPIs) are ubiquitous in almost all biological processes and are often corrupted in diseased states. A detailed understanding of PPIs is therefore key to understanding cellular physiology and can yield attractive therapeutic targets. Here, we describe the development and structural characterization of novel Escherichia coli CueO multi-copper oxidase variants engineered to recapitulate protein-protein interactions with commensurate modulation of their enzymatic activities. The fully integrated single-protein sensors were developed through modular grafting of ligand-specific peptides into a highly compliant and flexible methionine-rich loop of CueO. Sensitive detection of diverse ligand classes exemplified by antibodies, an E3 ligase, MDM2 proto-oncogene (MDM2), and protease (SplB from Staphylococcus aureus) was achieved in a simple mix and measure homogeneous format with visually observable colorimetric readouts. Therapeutic antagonism of MDM2 by small molecules and peptides in clinical development for treatment of cancer patients was assayed using the MDM2-binding CueO enzyme. Structural characterization of the free and MDM2-bound CueO variant provided functional insight into signal-transducing mechanisms of the engineered enzymes and highlighted the robustness of CueO as a stable and compliant scaffold for multiple applications.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli/enzimologia , Cinética , Ligantes , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Homologia de Sequência de Aminoácidos
8.
Sci Rep ; 8(1): 12946, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154420

RESUMO

We have investigated the use of fluorescent molecular rotors as probes for detection of p53 binding to DNA. These are a class of fluorophores that undergo twisted intramolecular charge transfer (TICT). They are non-fluorescent in a freely rotating conformation and experience a fluorescence increase when restricted in the planar conformation. We hypothesized that intercalation of a molecular rotor between DNA base pairs would result in a fluorescence turn-on signal. Upon displacement by a DNA binding protein, measurable loss of signal would facilitate use of the molecular rotor in the fluorescent intercalator displacement (FID) assay. A panel of probes was interrogated using the well-established p53 model system across various DNA response elements. A novel, readily synthesizable molecular rotor incorporating an acridine orange DNA intercalating group (AO-R) outperformed other conventional dyes in the FID assay. It enabled relative measurement of p53 sequence-specific DNA interactions and study of the dominant-negative effects of cancer-associated p53 mutants. In a further application, AO-R also proved useful for staining apoptotic cells in live zebrafish embryos.


Assuntos
DNA/química , Corantes Fluorescentes/química , Substâncias Intercalantes/química , Proteína Supressora de Tumor p53/química , DNA/metabolismo , Humanos , Espectrometria de Fluorescência , Proteína Supressora de Tumor p53/metabolismo
9.
PLoS One ; 12(12): e0189379, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29228061

RESUMO

As primary p53 antagonists, Mdm2 and the closely related Mdm4 are relevant cancer therapeutic targets. We have previously described a series of cell-permeable stapled peptides that bind to Mdm2 with high affinity, resulting in activation of the p53 tumour suppressor. Within this series, highest affinity was obtained by modification of an obligate tryptophan residue to the non-natural L-6-chlorotryptophan. To understand the structural basis for improved affinity we have solved the crystal structure of this stapled peptide (M011) bound to Mdm2 (residues 6-125) at 1.66 Å resolution. Surprisingly, near identity to the structure of a related peptide (M06) without the 6-chloro modification is observed. Further analysis of linear and stapled peptides comprising 6-Me-tryptophan provides mechanistic insight into dual Mdm2/Mdm4 antagonism and confirms L98 of Mdm4 as a mutable steric gate. The results also highlight a possible role of the flexible hinge region in determining Mdm2/Mdm4 plasticity.


Assuntos
Aminoácidos/química , Proteínas Nucleares/química , Peptídeos/química , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas/química , Sequência de Aminoácidos , Proteínas de Ciclo Celular , Cristalografia por Raios X , Humanos , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Alinhamento de Sequência , Relação Estrutura-Atividade
10.
Methods Mol Biol ; 1596: 167-177, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293887

RESUMO

Peptide motifs are crucial mediators of protein-protein interactions as well as sites of specific protease activity. The detection and characterization of these events is therefore indispensable for a detailed understanding of cellular regulation. Here, we present versatile and modular sensors that allow the user to detect protease activity and protein-peptide interactions, as well as to screen for inhibitors using chromogenic, fluorescent, or luminescent output.


Assuntos
Regulação Alostérica/genética , Peptídeo Hidrolases/genética , Peptídeos/genética , Sequência de Bases , Técnicas Biossensoriais/métodos , Domínios e Motivos de Interação entre Proteínas/genética
11.
J Mol Cell Biol ; 9(1): 3-15, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077607

RESUMO

Mouse double minute (Mdm) genes span an evolutionary timeframe from the ancient eukaryotic placozoa Trichoplax adhaerens to Homo sapiens, implying a significant and possibly conserved cellular role throughout history. Maintenance of DNA integrity and response to DNA damage involve many key regulatory pathways, including precise control over the tumour suppressor protein p53. In most vertebrates, degradation of p53 through proteasomal targeting is primarily mediated by heterodimers of Mdm2 and the Mdm2-related protein Mdm4 (also known as MdmX). Both Mdm2 and Mdm4 have p53-binding regions, acidic domains, zinc fingers, and C-terminal RING domains that are conserved throughout evolution. Vertebrates typically have both Mdm2 and Mdm4 genes, while analyses of sequenced genomes of invertebrate species have identified single Mdm genes, suggesting that a duplication event occurred prior to emergence of jawless vertebrates about 550-440 million years ago. The functional relationship between Mdm and p53 in T. adhaerens, an organism that has existed for 1 billion years, implies that these two proteins have evolved together to maintain a conserved and regulated function.


Assuntos
Evolução Biológica , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Modelos Animais , Proteínas Nucleares/química , Domínios Proteicos , Proteínas Proto-Oncogênicas c-mdm2/química , Vírus/metabolismo
12.
Genes Dev ; 30(3): 281-92, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26798135

RESUMO

The extant jawless vertebrates, represented by lampreys and hagfish, are the oldest group of vertebrates and provide an interesting genomic evolutionary pivot point between invertebrates and jawed vertebrates. Through genome analysis of one of these jawless vertebrates, the Japanese lamprey (Lethenteron japonicum), we identified all three members of the important p53 transcription factor family--Tp53, Tp63, and Tp73--as well as the Mdm2 and Mdm4 genes. These genes and their products are significant cellular regulators in human cancer, and further examination of their roles in this most distant vertebrate relative sheds light on their origin and coevolution. Their important role in response to DNA damage has been highlighted by the discovery of multiple copies of the Tp53 gene in elephants. Expression of lamprey p53, Mdm2, and Mdm4 proteins in mammalian cells reveals that the p53-Mdm2 interaction and the Mdm2/Mdm4 E3 ligase activity existed in the common ancestor of vertebrates and have been conserved for >500 million years of vertebrate evolution. Lamprey Mdm2 degrades human p53 with great efficiency, but this interaction is not blocked by currently available small molecule inhibitors of the human HDM2 protein, suggesting utility of lamprey Mdm2 in the study of the human p53 signaling pathway.


Assuntos
Lampreias/genética , Lampreias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Sequência Conservada , Genoma , Humanos , Lampreias/classificação , Camundongos , Modelos Moleculares , Filogenia , Ligação Proteica , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
13.
Protein Eng Des Sel ; 29(1): 11-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26508747

RESUMO

The immunohistochemical (IHC) staining of mouse tissue sections using antibodies of mouse origin can result in high nonspecific background due to the staining of endogenous immunoglobulins (Igs) by enzyme-conjugated secondary antibodies. In order to obviate this issue, we developed a chimeric mouse-human anti-p53 monoclonal antibody (MH242) by grafting the variable regions of a known mouse antibody into a human Ig scaffold. This facilitated use of an anti-human secondary antibody, and resulted in near-zero background when compared with its parental mouse monoclonal antibody (PAb242). Furthermore, the chimeric antibody enabled reproducible detection of mutant p53 (homozygous R172H) expression in mouse tissue, an observation hitherto largely equivocal based on the use of existing antibodies. The approach we describe leads to the generation of tractable antibody reagents, whose integrity can be readily verified through DNA sequencing of expressor plasmids. The wide-spread adoption of such 'digitized' antibodies should reduce experimental disparities that can commonly arise through variations in antibody quality.


Assuntos
Anticorpos Monoclonais/química , Imuno-Histoquímica/métodos , Imagem Molecular/métodos , Proteínas Recombinantes de Fusão/química , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Humanos , Imunoglobulina G/genética , Intestinos/química , Camundongos , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/imunologia
14.
Protein Eng Des Sel ; 28(7): 211-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25787692

RESUMO

Advances in genome engineering are attendant on the development of novel enzyme variants with programed substrate specificities and improved activity. We have devised a novel selection method, wherein the activity of a recombinase deletes the gene encoding an inhibitor of an enzyme conferring a selectable phenotype. By using ß-lactamase and the ß-lactamase inhibitor protein, the selection couples recombinase activity to Escherichia coli survival in the presence of ampicillin. Using this method, we generated λ integrase variants displaying improved in vitro recombination of a non-cognate substrate present in the human genome. One generalist integrase variant displaying enhanced catalytic activity was further used in a facile, single-step transformation method to introduce transgenes up to 8.5 kb into the unique endogenous attB site of common laboratory E.coli strains.


Assuntos
Evolução Molecular Direcionada/métodos , Integrases/genética , Integrases/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Escherichia coli/genética , Humanos , Mutação , Recombinação Genética , Especificidade por Substrato , Transformação Genética , beta-Lactamases/genética
15.
PLoS One ; 9(8): e104914, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25115702

RESUMO

As key negative regulator of the p53 tumour suppressor, Mdm2 is an attractive therapeutic target. Small molecules such as Nutlin have been developed to antagonise Mdm2, resulting in p53-dependent death of tumour cells. We have recently described a mutation in Mdm2 (M62A), which precludes binding of Nutlin, but not p53. This Nutlin-resistant variant is not, however, refractory to binding and inhibition by stapled peptide antagonists targeting the same region of Mdm2. A detailed understanding of how stapled peptides are recalcitrant to Mdm2 mutations conferring Nutlin-resistance will aid in the further development of potent Mdm2 antagonists. Here, we report the 2.00 Å crystal structure of a stapled peptide antagonist bound to Nutlin resistant Mdm2. The stapled peptide relies on an extended network of interactions along the hydrophobic binding cleft of Mdm2 for high affinity binding. Additionally, as seen in other stapled peptide structures, the hydrocarbon staple itself contributes to binding through favourable interactions with Mdm2. The structure highlights the intrinsic plasticity present in both Mdm2 and the hydrocarbon staple moiety, and can be used to guide future iterations of both small molecules and stapled peptides for improved antagonists of Mdm2.


Assuntos
Imidazóis/química , Piperazinas/química , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/química , Sequência de Aminoácidos , Ligação Competitiva , Linhagem Celular , Cristalografia por Raios X , Polarização de Fluorescência , Humanos , Imidazóis/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Piperazinas/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
16.
J Am Chem Soc ; 136(17): 6159-62, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24494589

RESUMO

We demonstrate the use of fluorescent molecular rotors as probes for detecting biomolecular interactions, specifically peptide-protein interactions. Molecular rotors undergo twisted intramolecular charge transfer upon irradiation, relax via the nonradiative torsional relaxation pathway, and have been typically used as viscosity probes. Their utility as a tool for detecting specific biomolecular interactions has not been explored. Using the well characterized p53-Mdm2 interaction as a model system, we designed a 9-(2-carboxy-2-cyanovinyl) julolidine-based p53 peptide reporter, JP1-R, which fluoresces conditionally only upon Mdm2 binding. The reporter was used in a rapid, homogeneous assay to screen a fragment library for antagonists of the p53-Mdm2 interaction, and several inhibitors were identified. Subsequent validation of these hits using established secondary assays suggests increased sensitivity afforded by JP1-R. The fluorescence of molecular rotors contingent upon target binding makes them a versatile tool for detecting specific biomolecular interactions.


Assuntos
Corantes Fluorescentes/metabolismo , Nitrilas/metabolismo , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Quinolizinas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Avaliação Pré-Clínica de Medicamentos/métodos , Corantes Fluorescentes/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Nitrilas/química , Peptídeos/química , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Quinolizinas/química , Espectrometria de Fluorescência/métodos , Proteína Supressora de Tumor p53/antagonistas & inibidores , Viscosidade
17.
Biosens Bioelectron ; 56: 250-7, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24508816

RESUMO

We have previously developed a sensitive and modular homogenous biosensor system using peptides to detect target ligands. By transposing the basic mechanistic principle of the nuclease protection assay into this biosensor framework, we have developed the protease exclusion (PE) assay which can discern antagonists of protein-protein interactions in a rapid, single-step format. We demonstrate the concept with multiple protein-peptide pairs and validate the method by successfully screening a small molecule library for compounds capable of inhibiting the therapeutically relevant p53-Mdm2 interaction. The Protease Exclusion method adds to the compendium of assays available for rapid analyte detection and is particularly suited for drug screening applications.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Técnicas Biossensoriais/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Fluorescência , Ensaios de Triagem em Larga Escala/métodos , Peptídeos/química , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores
18.
J Biomol Screen ; 19(4): 516-25, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24476585

RESUMO

Protein-protein interactions (PPIs) are attractive but challenging targets for drug discovery. To overcome numerous limitations of the currently available cell-based PPI assays, we have recently established a fully reversible microscopy-assisted fluorescent two-hybrid (F2H) assay. The F2H assay offers a fast and straightforward readout: an interaction-dependent co-localization of two distinguishable fluorescent signals at a defined spot in the nucleus of mammalian cells. We developed two reversible F2H assays for the interactions between the tumor suppressor p53 and its negative regulators, Mdm2 and Mdm4. We then performed a pilot F2H screen with a subset of compounds, including small molecules (such as Nutlin-3) and stapled peptides. We identified five cell-penetrating compounds as potent p53-Mdm2 inhibitors. However, none exhibited intracellular activity on p53-Mdm4. Live cell data generated by the F2H assays enable the characterization of stapled peptides based on their ability to penetrate cells and disrupt p53-Mdm2 interaction as well as p53-Mdm4 interaction. Here, we show that the F2H assays enable side-by-side analysis of substances' dual Mdm2-Mdm4 activity. In addition, they are suitable for testing various types of compounds (e.g., small molecules and peptidic inhibitors) and concurrently provide initial data on cellular toxicity. Furthermore, F2H assays readily allow real-time visualization of PPI dynamics in living cells.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Imunofluorescência , Ligação Proteica/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Humanos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas , Proteína Supressora de Tumor p53/metabolismo
19.
Biosens Bioelectron ; 47: 421-8, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23612064

RESUMO

Numerous peptide ligands including protease recognition sequences, peptides mediating protein-protein interactions, peptide epitopes of antibodies and mimotopes are available which bind molecules of interest. However, there is currently no facile method for the incorporation of these peptides into homogenous detection systems. We present a generalizable method for the incorporation of such peptides into a novel fusion protein framework comprising an enzyme and its inhibitor. The incorporated peptide functions as an allosteric hinge, linking enzyme to its inhibitor. Upon interaction with its cognate analyte, the peptide mediates dissociation of the inhibitor from the enzyme, and facilitates one-step signal generation. Likewise, cleavage of the peptide by a specific protease also causes enzyme-inhibitor dissociation, leading to signal generation. Using the ß-lactamase Tem1 and its inhibitor protein as a model scaffold, we show both specific and sensitive (between low nanomolar and mid-picomolar) colorimetric detection of proteases and antibodies within minutes in a homogenous one-step reaction visible to the naked eye. The same scaffold affords in vivo detection of antibody binding and protease function by linking activity to a selectable phenotype in E. coli.


Assuntos
Técnicas Biossensoriais/métodos , Escherichia coli/química , Peptídeo Hidrolases/isolamento & purificação , Peptídeos/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Epitopos/química , Epitopos/imunologia , Escherichia coli/genética , Ligantes , Camundongos , Peptídeo Hidrolases/imunologia
20.
Cell Cycle ; 9(4): 748-54, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20160485

RESUMO

The p53 protein and its negative regulator the ubiquitin E3 ligase Mdm2 have been shown to be conserved from the T. adhaerens to man. In common with D. melanogaster and C. elegans, there is a single copy of the p53 gene in T. adhaerens, while in the vertebrates three p53-like genes can be found: p53, p63 and p73. The Mdm2 gene is not present within the fully sequenced and highly annotated genomes of C. elegans and D. melanogaster. However, it is present in Placazoanand the presence of multiple distinct p53 genes in the Sea anemone N. vectensis led us to examine the genomes of other phyla for p53 and Mdm2-like genes. We report here the discovery of an Mdm2-like gene and two distinct p53-like genes in the Arachnid Ioxodes scapularis (Northern Deer Tick). The two predicted Deer Tick p53 proteins are much more highly related to the human p53 protein in sequence than are the fruit fly and nematode proteins. One of the Deer Tick genes encodes a p53 protein that is initiated within the DNA binding domain of p53 and shows remarkable homology to the newly described N-terminally truncated delta isoforms of human and zebrafish p53.


Assuntos
Aracnídeos/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/química , Evolução Molecular , Humanos , Camundongos , Dados de Sequência Molecular , Placozoa/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/química , Alinhamento de Sequência , Proteína Supressora de Tumor p53/química , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA