RESUMO
The lung is a dynamic mechanical organ and several pulmonary disorders are characterized by heterogeneous changes in the lung's local mechanical properties (i.e. stiffness). These alterations lead to abnormal lung tissue deformation (i.e. strain) which have been shown to promote disease progression. Although heterogenous mechanical properties may be important biomarkers of disease, there is currently no non-invasive way to measure these properties for clinical diagnostic purposes. In this study, we use a magnetic resonance elastography technique to measure heterogenous distributions of the lung's shear stiffness in healthy adults and in people with Cystic Fibrosis. Additionally, computational finite element models which directly incorporate the measured heterogenous mechanical properties were developed to assess the effects on lung tissue deformation. Results indicate that consolidated lung regions in people with Cystic Fibrosis exhibited increased shear stiffness and reduced spatial heterogeneity compared to surrounding non-consolidated regions. Accounting for heterogenous lung stiffness in healthy adults did not change the globally averaged strain magnitude obtained in computational models. However, computational models that used heterogenous stiffness measurements predicted significantly more variability in local strain and higher spatial strain gradients. Finally, computational models predicted lower strain variability and spatial strain gradients in consolidated lung regions compared to non-consolidated regions. These results indicate that spatial variability in shear stiffness alters local strain and strain gradient magnitudes in people with Cystic Fibrosis. This imaged-based modeling technique therefore represents a clinically viable way to non-invasively assess lung mechanics during both health and disease.
RESUMO
The pro-inflammatory response of alveolar macrophages to injurious physical forces during mechanical ventilation is regulated by the anti-inflammatory microRNA, miR-146a. Increasing miR-146a expression to supraphysiologic levels using untargeted lipid nanoparticles reduces ventilator-induced lung injury but requires a high initial dose of miR-146a making it less clinically applicable. In this study, we developed mannosylated lipid nanoparticles that can effectively mitigate lung injury at the initiation of mechanical ventilation with lower doses of miR-146a. We used a physiologically relevant humanized in vitro coculture system to evaluate the cell-specific targeting efficiency of the mannosylated lipid nanoparticle. We discovered that mannosylated lipid nanoparticles preferentially deliver miR-146a to alveolar macrophages and reduce force-induced inflammation in vitro. Our in vivo study using a clinically relevant mouse model of hemorrhagic shock-induced acute respiratory distress syndrome demonstrated that delivery of a low dose of miR-146a (0.1 nmol) using mannosylated lipid nanoparticles dramatically increases miR-146a levels in mouse alveolar macrophages and decreases lung inflammation. These data suggest that mannosylated lipid nanoparticles may have the therapeutic potential to mitigate lung injury during mechanical ventilation.
Assuntos
Lesão Pulmonar , MicroRNAs , Síndrome do Desconforto Respiratório , Choque Hemorrágico , Animais , Camundongos , Macrófagos , Síndrome do Desconforto Respiratório/tratamento farmacológicoRESUMO
Idiopathic pulmonary fibrosis (IPF) is characterized by increased collagen accumulation that is progressive and nonresolving. Although fibrosis progression may be regulated by fibroblasts and alveolar macrophage (AM) interactions, this cellular interplay has not been fully elucidated. To study AM-fibroblast interactions, cells were isolated from IPF and normal human lung tissue and cultured independently or together in direct 2-D coculture, direct 3-D coculture, indirect transwell, and in 3-D hydrogels. AM influence on fibroblast function was assessed by gene expression, cytokine/chemokine secretion, and hydrogel contractility. Normal AMs cultured in direct contact with fibroblasts downregulated extracellular matrix (ECM) gene expression whereas IPF AMs had little to no effect. Fibroblast contractility was assessed by encapsulating cocultures in 3-D collagen hydrogels and monitoring gel diameter over time. Both normal and IPF AMs reduced baseline contractility of normal fibroblasts but had little to no effect on IPF fibroblasts. When stimulated with Toll-like receptor (TLR) agonists, IPF AMs increased production of pro-inflammatory cytokines TNFα and IL-1ß, compared with normal AMs. TLR ligand stimulation did not alter fibroblast contraction, but stimulation with exogenous TNFα and TGFß did alter contraction. To determine if the observed changes required cell-to-cell contact, AM-conditioned media and transwell systems were utilized. Transwell culture showed decreased ECM gene expression changes compared with direct coculture and conditioned media from AMs did not alter fibroblast contraction regardless of disease state. Taken together, these data indicate that normal fibroblasts are more responsive to AM crosstalk, and that AM influence on fibroblast behavior depends on cell proximity.
Assuntos
Fibrose Pulmonar Idiopática , Macrófagos Alveolares , Humanos , Macrófagos Alveolares/metabolismo , Técnicas de Cocultura , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Citocinas/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Células CultivadasRESUMO
Collagen deposition contributes to both high mammographic density and breast cancer progression. Low stromal PTEN expression has been observed in as many as half of breast tumors and is associated with increases in collagen deposition, however the mechanism connecting PTEN loss to increased collagen deposition remains unclear. Here, we demonstrate that Pten knockout in fibroblasts using an Fsp-Cre;PtenloxP/loxP mouse model increases collagen fiber number and fiber size within the mammary gland. Pten knockout additionally upregulated Sparc transcription in fibroblasts and promoted collagen shuttling out of the cell. Interestingly, SPARC mRNA expression was observed to be significantly elevated in the tumor stroma as compared to the normal breast in several patient cohorts. While SPARC knockdown via shRNA did not affect collagen shuttling, it notably decreased assembly of exogenous collagen. In addition, SPARC knockdown decreased fibronectin assembly and alignment of the extracellular matrix in an in vitro fibroblast-derived matrix model. Overall, these data indicate upregulation of SPARC is a mechanism by which PTEN regulates collagen deposition in the mammary gland stroma.
Assuntos
Colágeno/metabolismo , Glândulas Mamárias Humanas/metabolismo , Osteonectina/metabolismo , PTEN Fosfo-Hidrolase/fisiologia , Animais , Linhagem Celular , Matriz Extracelular/metabolismo , Fibroblastos , Humanos , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/patologia , Camundongos , Camundongos KnockoutRESUMO
Mechanical ventilation generates injurious forces that exacerbate lung injury. These forces disrupt lung barrier integrity, trigger proinflammatory mediator release, and differentially regulate genes and non-coding oligonucleotides including microRNAs. In this study, we identify miR-146a as a mechanosensitive microRNA in alveolar macrophages that has therapeutic potential to mitigate lung injury during mechanical ventilation. We use humanized in-vitro systems, mouse models, and biospecimens from patients to elucidate the expression dynamics of miR-146a needed to decrease lung injury during mechanical ventilation. We find that the endogenous increase in miR-146a following injurious ventilation is not sufficient to prevent lung injury. However, when miR-146a is highly overexpressed using a nanoparticle delivery platform it is sufficient to prevent injury. These data indicate that the endogenous increase in microRNA-146a during mechanical ventilation is a compensatory response that partially limits injury and that nanoparticle delivery of miR-146a is an effective strategy for mitigating lung injury during mechanical ventilation.
Assuntos
Técnicas de Transferência de Genes , Lesão Pulmonar/genética , Macrófagos Alveolares/metabolismo , Mecanotransdução Celular , Nanopartículas/química , Respiração Artificial/efeitos adversos , Transferência Adotiva , Animais , Lavagem Broncoalveolar , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Interleucina-8/metabolismo , Masculino , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Células THP-1 , Regulação para Cima/genéticaRESUMO
Myeloid derived suppressor cells (MDSCs) have gained significant attention for their immunosuppressive role in cancer and their ability to contribute to tumor progression and metastasis. Understanding the role of MDSCs in driving cancer cell migration, a process fundamental to metastasis, is essential to fully comprehend and target MDSC-tumor cell interactions. This study employs microfabricated platforms, which simulate the structural cues present in the tumor microenvironment (TME) to elucidate the effects of MDSCs on the migratory phenotype of cancer cells at the single cell level. The results indicate that the presence of MDSCs enhances the motility of cancer-epithelial cells when directional cues (either topographical or spatial) are present. This behavior appears to be independent of cell-cell contact and driven by soluble byproducts from heterotypic interactions between MDSCs and cancer cells. Moreover, MDSC cell-motility is also impacted by the presence of cancer cells and the cancer cell secretome in the presence of directional cues. Epithelial dedifferentiation is the likely mechanism for changes in cancer cell motility in response to MDSCs. These results highlight the biochemical and biostructural conditions under which MDSCs can support cancer cell migration, and could therefore provide new avenues of research and therapy aimed at stemming cancer progression.
Assuntos
Comunicação Celular , Movimento Celular , Células Supressoras Mieloides/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Células Supressoras Mieloides/patologia , Metástase Neoplásica , Neoplasias/patologiaRESUMO
BACKGROUND: The Eustachian tube is a collapsible upper respiratory airway that is periodically opened to maintain a healthy middle ear. Young children, <10â¯years old, exhibit reduced Eustachian tube opening efficiency and are at risk for developing middle ear infections. Although these infections increase mucosal adhesion, it is not known how adhesion forces alters the biomechanics of Eustachian tube opening in young children. This study uses computational techniques to investigate how increased mucosal adhesion alters Eustachian tube function in young children. METHODS: Multi-scale finite element models were used to simulate the muscle-assisted opening of the Eustachian tube in healthy adults and young children. Airflow during opening was quantified as a function of adhesion strength, muscle forces and tissue mechanics. FINDINGS: Although Eustachian tube function was sensitive to increased mucosal adhesion in both adults and children, young children developed Eustachian tube dysfunction at significantly lower values of mucosal adhesion. Specifically, the critical adhesion value was 2 orders of magnitude lower in young children as compared to healthy adults. Although increased adhesion did not alter the sensitivity of Eustachian tube function to tensor and levator veli palatini muscles forces, increased adhesion in young children did reduced the sensitivity of Eustachian tube function to changes in cartilage and mucosal tissue stiffness. INTERPRETATIONS: These results indicate that increased mucosal adhesion can significantly alter the biomechanical mechanisms of Eustachian tube function in young children and that clinical assessment of adhesion levels may be important in therapy selection.
Assuntos
Tuba Auditiva/fisiopatologia , Aderências Teciduais/fisiopatologia , Adulto , Idoso , Fenômenos Biomecânicos , Cartilagem/fisiopatologia , Criança , Pré-Escolar , Feminino , Análise de Elementos Finitos , Humanos , Hidrodinâmica , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Mucosa/fisiopatologia , Músculo Esquelético , Músculos/fisiopatologia , Otite Média/fisiopatologia , Adulto JovemRESUMO
The organization of the extracellular matrix has a profound impact on cancer development and progression. The matrix becomes aligned throughout tumor progression, providing "highways" for tumor cell invasion. Aligned matrix is associated with breast density and is a negative prognostic factor in several cancers; however, the underlying mechanisms regulating this reorganization remain poorly understood. Deletion of the tumor suppressor Pten in the stroma was previously shown to promote extracellular matrix expansion and tumor progression. However, it was unknown if PTEN also regulated matrix organization. To address this question, a murine model with fibroblast-specific Pten deletion was used to examine how PTEN regulates matrix remodeling. Using second harmonic generation microscopy, Pten deletion was found to promote collagen alignment parallel to the mammary duct in the normal gland and further remodeling perpendicular to the tumor edge in tumor-bearing mice. Increased alignment was observed with Pten deletion in vitro using fibroblast-derived matrices. PTEN loss was associated with fibroblast activation and increased cellular contractility, as determined by traction force microscopy. Inhibition of contractility abrogated the increased matrix alignment observed with PTEN loss. Murine mammary adenocarcinoma cells cultured on aligned matrices derived from Pten-/- fibroblasts migrated faster than on matrices from wild-type fibroblasts. Combined, these data demonstrate that PTEN loss in fibroblasts promotes extracellular matrix deposition and alignment independently from cancer cell presence, and this reorganization regulates cancer cell behavior. Importantly, stromal PTEN negatively correlated with collagen alignment and high mammographic density in human breast tissue, suggesting parallel function for PTEN in patients.
Assuntos
Matriz Extracelular/metabolismo , Glândulas Mamárias Animais/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Células Estromais/metabolismo , Animais , Densidade da Mama , Linhagem Celular Tumoral , Movimento Celular , Colágeno/metabolismo , Feminino , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Camundongos , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/genéticaRESUMO
Epithelial cancer cells can undergo an epithelial-mesenchymal transition (EMT), a complex genetic program that enables cells to break free from the primary tumor, breach the basement membrane, invade through the stroma and metastasize to distant organs. Myoferlin (MYOF), a protein involved in plasma membrane function and repair, is overexpressed in several invasive cancer cell lines. Depletion of myoferlin in the human breast cancer cell line MDA-MB-231 (MDA-231MYOFKD) reduced migration and invasion and caused the cells to revert to an epithelial phenotype. To test if this mesenchymal-epithelial transition was durable, MDA-231MYOFKD cells were treated with TGF-ß1, a potent stimulus of EMT. After 48 hr with TGF-ß1, MDA-231MYOFKD cells underwent an EMT. TGF-ß1 treatment also decreased directional cell motility toward more random migration, similar to the highly invasive control cells. To probe the potential mechanism of MYOF function, we examined TGF-ß1 receptor signaling. MDA-MB-231 growth and survival has been previously shown to be regulated by autocrine TGF-ß1. We hypothesized that MYOF depletion may result in the dysregulation of TGF-ß1 signaling, thwarting EMT. To investigate this hypothesis, we examined production of endogenous TGF-ß1 and observed a decrease in TGF-ß1 protein secretion and mRNA transcription. To determine if TGF-ß1 was required to maintain the mesenchymal phenotype, TGF-ß receptor signaling was inhibited with a small molecule inhibitor, resulting in decreased expression of several mesenchymal markers. These results identify a novel pathway in the regulation of autocrine TGF-ß signaling and a mechanism by which MYOF regulates cellular phenotype and invasive capacity of human breast cancer cells.
RESUMO
Recent cancer research has more strongly emphasized the biophysical aspects of tumor development, progression, and microenvironment. In addition to genetic modifications and mutations in cancer cells, it is now well accepted that the physical properties of cancer cells such as stiffness, electrical impedance, and refractive index vary with tumor progression and can identify a malignant phenotype. Moreover, cancer heterogeneity renders population-based characterization techniques inadequate, as individual cellular features are lost in the average. Hence, platforms for fast and accurate characterization of biophysical properties of cancer cells at the single-cell level are required. Here, we highlight some of the recent advances in the field of cancer biophysics and the development of lab-on-a-chip platforms for single-cell biophysical analyses of cancer cells.
Assuntos
Fenômenos Biofísicos , Dispositivos Lab-On-A-Chip , Neoplasias/patologia , Neoplasias/fisiopatologia , Análise de Célula Única/métodos , Humanos , Análise de Célula Única/instrumentaçãoRESUMO
The leading cause of neonatal mortality, pre-term birth, is often caused by pre-mature ripening/opening of the uterine cervix. Although cervical fibroblasts play an important role in modulating the cervix's extracellular matrix (ECM) and mechanical properties, it is not known how hormones, i.e., progesterone, and pro-inflammatory insults alter fibroblast mechanics, fibroblast-ECM interactions and the resulting changes in tissue mechanics. Here we investigate how progesterone and a pro-inflammatory cytokine, IL-1ß, alter the biomechanical properties of human cervical fibroblasts and the fibroblast-ECM interactions that govern tissue-scale mechanics. Primary human fibroblasts were isolated from non-pregnant cervix and treated with estrogen/progesterone, IL-1ß or both. The resulting changes in ECM gene expression, matrix remodeling, traction force generation, cell-ECM adhesion and tissue contractility were monitored. Results indicate that IL-1ß induces a significant reduction in traction force and ECM adhesion independent of pre-treatment with progesterone. These cell level effects altered tissue-scale mechanics where IL-1ß inhibited the contraction of a collagen gel over 6 days. Interestingly, progesterone treatment alone did not modulate traction forces or gel contraction but did result in a dramatic increase in cell-ECM adhesion. Therefore, the protective effect of progesterone may be due to altered adhesion dynamics as opposed to altered ECM remodeling.
Assuntos
Colo do Útero/citologia , Fibroblastos/efeitos dos fármacos , Interleucina-1beta/farmacologia , Progesterona/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Estradiol/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/fisiologia , Feminino , Fibroblastos/fisiologia , Humanos , Metaloproteinases da Matriz/metabolismoRESUMO
Stenotic nares, edematous intranasal turbinates, mucosal swelling, and an elongated, thickened soft palate are common sources of airflow resistance for dogs with brachycephalic airway syndrome. Surgery has focused on enlarging the nasal apertures and reducing tissue of the soft palate. However, objective measures of surgical efficacy are lacking. Twenty-one English bulldogs without previous surgery were recruited for this prospective, pilot study. Computed tomography was performed using conscious sedation and without endotracheal intubation using a 128 multidetector computed tomography scanner. Raw multidetector computed tomography data were rendered to create a three-dimensional surface mesh model by automatic segmentation of the air-filled nasal passage from the nares to the caudal soft palate. Three-dimensional surface models were used to construct computational fluid dynamics models of nasal airflow resistance from the nares to the caudal aspect of the soft palate. The computational fluid dynamics models were used to simulate airflow in each dog and airway resistance varied widely with a median 36.46 (Pa/mm)/(l/s) and an interquartile range of 19.84 to 90.74 (Pa/mm)/(/s). In 19/21 dogs, the rostral third of the nasal passage exhibited a larger airflow resistance than the caudal and middle regions of the nasal passage. In addition, computational fluid dynamics data indicated that overall measures of airflow resistance may significantly underestimate the maximum local resistance. We conclude that computational fluid dynamics models derived from nasal multidetector computed tomography can quantify airway resistance in brachycephalic dogs. This methodology represents a novel approach to noninvasively quantify airflow resistance and may have utility for objectively studying effects of surgical interventions in canine brachycephalic airway syndrome.
Assuntos
Resistência das Vias Respiratórias , Cães/anormalidades , Hidrodinâmica , Cavidade Nasal/diagnóstico por imagem , Tomografia Computadorizada por Raios X/veterinária , Animais , Biologia Computacional , Feminino , Masculino , Cavidade Nasal/anormalidades , Cavidade Nasal/patologia , Projetos Piloto , Estudos ProspectivosRESUMO
The extracellular matrix (ECM) is critical for mammary ductal development and differentiation, but how mammary fibroblasts regulate ECM remodeling remains to be elucidated. Herein, we used a mouse genetic model to activate platelet derived growth factor receptor-alpha (PDGFRα) specifically in the stroma. Hyperactivation of PDGFRα in the mammary stroma severely hindered pubertal mammary ductal morphogenesis, but did not interrupt the lobuloalveolar differentiation program. Increased stromal PDGFRα signaling induced mammary fat pad fibrosis with a corresponding increase in interstitial hyaluronic acid (HA) and collagen deposition. Mammary fibroblasts with PDGFRα hyperactivation also decreased hydraulic permeability of a collagen substrate in an in vitro microfluidic device assay, which was mitigated by inhibition of either PDGFRα or HA. Fibrosis seen in this model significantly increased the overall stiffness of the mammary gland as measured by atomic force microscopy. Further, mammary tumor cells injected orthotopically in the fat pads of mice with stromal activation of PDGFRα grew larger tumors compared to controls. Taken together, our data establish that aberrant stromal PDGFRα signaling disrupts ECM homeostasis during mammary gland development, resulting in increased mammary stiffness and increased potential for tumor growth.
Assuntos
Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Neoplasias Mamárias Animais/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Diferenciação Celular/genética , Matriz Extracelular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Ácido Hialurônico/administração & dosagem , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Humanas/patologia , Neoplasias Mamárias Animais/patologia , Camundongos , Morfogênese/genética , Transdução de Sinais , Células Estromais/patologiaRESUMO
Objective In this report, we review the recent literature (ie, past 4 years) to identify advances in our understanding of the middle ear-mastoid-eustachian tube system. We use this review to determine whether the short-term goals elaborated in the last report were achieved, and we propose updated goals to guide future otitis media research. Data Sources PubMed, Web of Science, Medline. Review Methods The panel topic was subdivided, and each contributor performed a literature search within the given time frame. The keywords searched included middle ear, eustachian tube, and mastoid for their intersection with anatomy, physiology, pathophysiology, and pathology. Preliminary reports from each panel member were consolidated and discussed when the panel met on June 11, 2015. At that meeting, the progress was evaluated and new short-term goals proposed. Conclusions Progress was made on 13 of the 20 short-term goals proposed in 2011. Significant advances were made in the characterization of middle ear gas exchange pathways, modeling eustachian tube function, and preliminary testing of treatments for eustachian tube dysfunction. Implications for Practice In the future, imaging technologies should be developed to noninvasively assess middle ear/eustachian tube structure and physiology with respect to their role in otitis media pathogenesis. The new data derived from these structure/function experiments should be integrated into computational models that can then be used to develop specific hypotheses concerning otitis media pathogenesis and persistence. Finally, rigorous studies on medical or surgical treatments for eustachian tube dysfunction should be undertaken.
Assuntos
Orelha Média/anatomia & histologia , Orelha Média/fisiologia , Processo Mastoide/anatomia & histologia , Processo Mastoide/fisiologia , Animais , Congressos como Assunto , Tuba Auditiva/anatomia & histologia , Tuba Auditiva/fisiologia , Humanos , Modelos AnimaisRESUMO
BACKGROUND: Recent evidence showed that pediatric donor lungs increased rates of allograft failure in adult lung transplant recipients; however, the influence on survival is unclear. METHODS: The United Network for Organ Sharing (UNOS) database was queried from 2005 to 2013 for adult lung transplant recipients (≥18 years) to assess survival differences among donor age categories (<18 years, 18 to 29 years, 30 to 59 years, ≥60 years). RESULTS: Of 12,297 adult lung transplants, 12,209 were used for univariate Cox models and Kaplan-Meier (KM) analysis and 11,602 for multivariate Cox models. A total of 1,187 adult recipients received pediatric donor lungs compared with 11,110 receiving adult donor organs. Univariate and multivariate Cox models found no difference in survival between donor ages 0 to 17 and donor ages 18 to 29, whereas donor ages 60 and older were significantly associated with increased mortality hazard, relative to the modal category of donor ages 30 to 59 (adjusted hazard ratio = 1.381; 95% confidence interval = 1.188% to 1.606%; p < 0.001). Interactions between recipient and donor age range found that the oldest donor age range was negatively associated with survival among middle-aged (30 to 59) and older (≥60) lung transplant recipients. CONCLUSIONS: Pediatric donor lung allografts were not negatively associated with survival in adult lung transplant recipients; however, the oldest donor age range was associated with increased mortality hazard for adult lung transplant recipients.
Assuntos
Transplante de Pulmão , Transplantados/estatística & dados numéricos , Adolescente , Adulto , Aloenxertos , Criança , Pré-Escolar , Humanos , Lactente , Estimativa de Kaplan-Meier , Transplante de Pulmão/mortalidade , Pessoa de Meia-Idade , Adulto JovemRESUMO
The molecular mechanisms for lung cell repair are largely unknown. Previous studies identified tripartite motif protein 72 (TRIM72) from striated muscle and linked its function to tissue repair. In this study, we characterized TRIM72 expression in lung tissues and investigated the role of TRIM72 in repair of alveolar epithelial cells. In vivo injury of lung cells was introduced by high tidal volume ventilation, and repair-defective cells were labeled with postinjury administration of propidium iodide. Primary alveolar epithelial cells were isolated and membrane wounding and repair were labeled separately. Our results show that absence of TRIM72 increases susceptibility to deformation-induced lung injury whereas TRIM72 overexpression is protective. In vitro cell wounding assay revealed that TRIM72 protects alveolar epithelial cells through promoting repair rather than increasing resistance to injury. The repair function of TRIM72 in lung cells is further linked to caveolin 1. These data suggest an essential role for TRIM72 in repair of alveolar epithelial cells under plasma membrane stress failure.
Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Epiteliais , Alvéolos Pulmonares , Cicatrização , Animais , Proteínas de Transporte/genética , Caveolina 1/genética , Caveolina 1/metabolismo , Membrana Celular/genética , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas de Membrana , Camundongos , Camundongos Knockout , Alvéolos Pulmonares/lesões , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologiaRESUMO
Cell migration plays a central role in the invasion and metastasis of tumors. As cells leave the primary tumor, they undergo an epithelial to mesenchymal transition (EMT) and migrate as single cells. Epithelial tumor cells may also migrate in a highly directional manner as a collective group in some settings. We previously discovered that myoferlin (MYOF) is overexpressed in breast cancer cells and depletion of MYOF results in a mesenchymal to epithelial transition (MET) and reduced invasion through extracellular matrix (ECM). However, the biomechanical mechanisms governing cell motility during MYOF depletion are poorly understood. We first demonstrated that lentivirus-driven shRNA-induced MYOF loss in MDA-MB-231 breast cancer cells (MDA-231(MYOF-KD)) leads to an epithelial morphology compared to the mesenchymal morphology observed in control (MDA-231(LTVC)) and wild-type cells. Knockdown of MYOF led to significant reductions in cell migration velocity and MDA-231(MYOF-KD) cells migrated directionally and collectively, while MDA-231(LTVC) cells exhibited single cell migration. Decreased migration velocity and collective migration were accompanied by significant changes in cell mechanics. MDA-231(MYOF-KD) cells exhibited a 2-fold decrease in cell stiffness, a 2-fold increase in cell-substrate adhesion and a 1.5-fold decrease in traction force generation. In vivo studies demonstrated that when immunocompromised mice were implanted with MDA-231(MYOF-KD) cells, tumors were smaller and demonstrated lower tumor burden. Moreover, MDA-231(MYOF-KD) tumors were highly circularized and did not invade locally into the adventia in contrast to MDA-231(LTVC)-injected animals. Thus MYOF loss is associated with a change in tumor formation in xenografts and leads to smaller, less invasive tumors. These data indicate that MYOF, a previously unrecognized protein in cancer, is involved in MDA-MB-231 cell migration and contributes to biomechanical alterations. Our results indicate that changes in biomechanical properties following loss of this protein may be an effective way to alter the invasive capacity of cancer cells.
Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação ao Cálcio/genética , Movimento Celular/genética , Proteínas de Membrana/genética , Proteínas Musculares/genética , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , CamundongosRESUMO
The interactions between adherent cells and their extracellular matrix (ECM) have been shown to play an important role in many biological processes, such as wound healing, morphogenesis, differentiation, and cell migration. Cells attach to the ECM at focal adhesion sites and transmit contractile forces to the substrate via cytoskeletal actin stress fibers. This contraction results in traction stresses within the substrate/ECM. Traction force microscopy (TFM) is an experimental technique used to quantify the contractile forces generated by adherent cells. In TFM, cells are seeded on a flexible substrate and displacements of the substrate caused by cell contraction are tracked and converted to a traction stress field. The magnitude of these traction stresses are normally used as a surrogate measure of internal cell contractile force or contractility. We hypothesize that in addition to contractile force, other biomechanical properties including cell stiffness, adhesion energy density, and cell morphology may affect the traction stresses measured by TFM. In this study, we developed finite element models of the 2D and 3D TFM techniques to investigate how changes in several biomechanical properties alter the traction stresses measured by TFM. We independently varied cell stiffness, cell-ECM adhesion energy density, cell aspect ratio, and contractility and performed a sensitivity analysis to determine which parameters significantly contribute to the measured maximum traction stress and net contractile moment. Results suggest that changes in cell stiffness and adhesion energy density can significantly alter measured tractions, independent of contractility. Based on a sensitivity analysis, we developed a correction factor to account for changes in cell stiffness and adhesion and successfully applied this correction factor algorithm to experimental TFM measurements in invasive and noninvasive cancer cells. Therefore, application of these types of corrections to TFM measurements can yield more accurate estimates of cell contractility.
Assuntos
Adesão Celular/fisiologia , Fenômenos Fisiológicos Celulares/fisiologia , Matriz Extracelular/fisiologia , Adesões Focais/fisiologia , Mecanotransdução Celular/fisiologia , Microscopia/métodos , Modelos Biológicos , Animais , Movimento Celular/fisiologia , Tamanho Celular , Simulação por Computador , Módulo de Elasticidade/fisiologia , Matriz Extracelular/ultraestrutura , Análise de Elementos Finitos , Humanos , Estresse MecânicoRESUMO
OBJECTIVE: This report reviews the literature to identify the advances in our understanding of the middle ear (ME)-Eustachian tube (ET) system during the past 4 years and, on that basis, to determine whether the short-term goals elaborated in the last report were achieved and propose updated goals to guide future otitis media (OM) research. DATA SOURCES: Databases searched included PubMed, Web of Science (1945-present), Medline (1950 to present), Biosis Previews (1969-present), and the Zoological Record (1978 to present). The initial literature search covered the time interval from January 2007 to June 2011, with a supplementary search completed in February 2012. REVIEW METHODS: The panel topic was subdivided; each contributor performed a literature search and provided a preliminary report. Those reports were consolidated and discussed when the panel met on June 9, 2011. At that meeting, the progress was evaluated and new short-term goals proposed. CONCLUSIONS: Progress was made on 16 of the 19 short-term goals proposed in 2007. Significant advances were made in the characterization of ME gas exchange pathways, modeling ET function, and preliminary testing of treatments for ET dysfunction. IMPLICATIONS FOR PRACTICE: In the future, imaging technologies should be developed to noninvasively assess ME/ET structure and physiology with respect to their role in OM pathogenesis. The new data derived from form/function experiments should be integrated into the finite element models and used to develop specific hypotheses concerning OM pathogenesis and persistence. Finally, rigorous studies of treatments, medical or surgical, of ET dysfunction should be undertaken.
Assuntos
Orelha Média , Processo Mastoide , Otite Média , Orelha Média/anatomia & histologia , Orelha Média/fisiologia , Orelha Média/fisiopatologia , Tuba Auditiva/anatomia & histologia , Tuba Auditiva/fisiologia , Tuba Auditiva/fisiopatologia , Humanos , Processo Mastoide/anatomia & histologia , Processo Mastoide/fisiologia , Processo Mastoide/fisiopatologia , Otite Média/complicações , Otite Média/etiologia , Otite Média/fisiopatologia , Otite Média/terapia , Otite Média com Derrame/etiologia , Otite Média com Derrame/fisiopatologia , Otite Média com Derrame/terapia , Projetos de PesquisaRESUMO
Mechanical ventilation generates biophysical forces, including high transmural pressures, which exacerbate lung inflammation. This study sought to determine whether microRNAs (miRNAs) respond to this mechanical force and play a role in regulating mechanically induced inflammation. Primary human small airway epithelial cells (HSAEpCs) were exposed to 12 h of oscillatory pressure and/or the proinflammatory cytokine TNF-α. Experiments were also conducted after manipulating miRNA expression and silencing the transcription factor NF-κB or toll-like receptor proteins IRAK1 and TRAF6. NF-κB activation, IL-6/IL-8/IL-1ß cytokine secretion, miRNA expression, and IRAK1/TRAF6 protein levels were monitored. A total of 12 h of oscillatory pressure and TNF-α resulted in a 5- to 7-fold increase in IL-6/IL-8 cytokine secretion, and oscillatory pressure also resulted in a time-dependent increase in IL-6/IL-8/IL-1ß cytokine secretion. Pressure and TNF-α also resulted in distinct patterns of miRNA expression, with miR-146a being the most deregulated miRNA. Manipulating miR-146a expression altered pressure-induced cytokine secretion. Silencing of IRAK1 or TRAF6, confirmed targets of miR-146a, resulted in a 3-fold decrease in pressure-induced cytokine secretion. Cotransfection experiments demonstrate that miR-146a's regulation of pressure-induced cytokine secretion depends on its targeting of both IRAK1 and TRAF6. MiR-146a is a mechanosensitive miRNA that is rapidly up-regulated by oscillatory pressure and plays an important role in regulating mechanically induced inflammation in lung epithelia.