Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biomed Inform ; 115: 103688, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33545331

RESUMO

One of the effective missions of biology and medical science is to find disease-related genes. Recent research uses gene/protein networks to find such genes. Due to false positive interactions in these networks, the results often are not accurate and reliable. Integrating multiple gene/protein networks could overcome this drawback, causing a network with fewer false positive interactions. The integration method plays a crucial role in the quality of the constructed network. In this paper, we integrate several sources to build a reliable heterogeneous network, i.e., a network that includes nodes of different types. Due to the different gene/protein sources, four gene-gene similarity networks are constructed first and integrated by applying the type-II fuzzy voter scheme. The resulting gene-gene network is linked to a disease-disease similarity network (as the outcome of integrating four sources) through a two-part disease-gene network. We propose a novel algorithm, namely random walk with restart on the heterogeneous network method with fuzzy fusion (RWRHN-FF). Through running RWRHN-FF over the heterogeneous network, disease-related genes are determined. Experimental results using the leave-one-out cross-validation indicate that RWRHN-FF outperforms existing methods. The proposed algorithm can be applied to find new genes for prostate, breast, gastric, and colon cancers. Since the RWRHN-FF algorithm converges slowly on large heterogeneous networks, we propose a parallel implementation of the RWRHN-FF algorithm on the Apache Spark platform for high-throughput and reliable network inference. Experiments run on heterogeneous networks of different sizes indicate faster convergence compared to other non-distributed modes of implementation.


Assuntos
Biologia Computacional , Redes Reguladoras de Genes , Algoritmos , Humanos , Masculino
2.
Sci Rep ; 10(1): 8846, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483162

RESUMO

Rare or orphan diseases affect only small populations, thereby limiting the economic incentive for the drug development process, often resulting in a lack of progress towards treatment. Drug repositioning is a promising approach in these cases, due to its low cost. In this approach, one attempts to identify new purposes for existing drugs that have already been developed and approved for use. By applying the process of drug repositioning to identify novel treatments for rare diseases, we can overcome the lack of economic incentives and make concrete progress towards new therapies. Adrenocortical Carcinoma (ACC) is a rare disease with no practical and definitive therapeutic approach. We apply Heter-LP, a new method of drug repositioning, to suggest novel therapeutic avenues for ACC. Our analysis identifies innovative putative drug-disease, drug-target, and disease-target relationships for ACC, which include Cosyntropin (drug) and DHCR7, IGF1R, MC1R, MAP3K3, TOP2A (protein targets). When results are analyzed using all available information, a number of novel predicted associations related to ACC appear to be valid according to current knowledge. We expect the predicted relations will be useful for drug repositioning in ACC since the resulting ranked lists of drugs and protein targets can be used to expedite the necessary clinical processes.


Assuntos
Neoplasias do Córtex Suprarrenal/patologia , Reposicionamento de Medicamentos/métodos , Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Carcinoma Adrenocortical/tratamento farmacológico , Carcinoma Adrenocortical/patologia , Biologia Computacional , Cosintropina/uso terapêutico , DNA Topoisomerases Tipo II/metabolismo , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA