Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Exp Mol Pathol ; 136: 104890, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378070

RESUMO

Alterations in the expression of certain genes could be associated with both patient mortality rates and drug resistance. This study aimed to identify genes in colorectal cancer (CRC) that potentially serve as hub genes influencing patient survival rates. RNA-Seq data were downloaded from the cancer genome atlas database, and differential expression analysis was performed between tumors and healthy controls. Through the utilization of univariate and multivariate Cox regression analyses, in combination with the MCODE clustering module, the genes whose expression changes were related to survival rate and the hub genes related to them were identified. The mortality risk model was computed using the hub genes. CRC samples and the RT-qPCR method were utilized to confirm the outcomes. PharmacoGx data were employed to link the expression of potential genes to medication resistance and sensitivity. The results revealed the discovery of seven hub genes, which emerged as independent prognostic markers. These included HOXC6, HOXC13, HOXC8, and TBX15, which were associated with poor prognosis and overexpression, as well as SDHB, COX5A, and UQCRC1, linked to favorable prognosis and downregulation. Applying the risk model developed with the mentioned genes revealed a markedly higher incidence of deceased patients in the high-risk group compared to the low-risk group. RT-qPCR results indicated a decrease in SDHB expression and an elevation in TBX15 levels in cancer samples relative to adjacent healthy tissue. Also, PharmacoGx data indicated that the expression level of SDHB was correlated with drug sensitivity to Crizotinib and Dovitinib. Our findings highlight the potential association between alterations in the expression of genes such as HOXC6, HOXC13, HOXC8, TBX15, SDHB, COX5A, and UQCRC1 and increased mortality rates in CRC patients. As revealed by the PPI network, these genes exhibited the most connections with other genes linked to survival.


Assuntos
Neoplasias Colorretais , Humanos , Prognóstico , Análise por Conglomerados , Regulação para Baixo , Neoplasias Colorretais/genética , Biomarcadores , Biomarcadores Tumorais/genética , Succinato Desidrogenase , Proteínas com Domínio T/genética
2.
Pathol Res Pract ; 253: 155014, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128189

RESUMO

This review examines and compares the diagnostic and prognostic capabilities of miRNAs and lncRNAs derived from pseudogenes in cancer patients. Additionally, it delves into their roles in cancer pathogenesis. Both miRNAs and pseudogene-derived lncRNAs have undergone thorough investigation as remarkably sensitive and specific cancer biomarkers, offering significant potential for cancer detection and monitoring. . Extensive research is essential to gain a complete understanding of the precise roles these non-coding RNAs play in cancer, allowing the development of novel targeted therapies and biomarkers for improved cancer detection and treatment approaches.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Pseudogenes/genética , Neoplasias/diagnóstico , Neoplasias/genética , Prognóstico , Biomarcadores Tumorais/genética
3.
Gene ; 898: 148074, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38104953

RESUMO

The cause of leukemia, a common malignancy of the hematological system, is unknown. The structure of long non-coding RNAs (lncRNAs) is similar to mRNA but no ability to encode proteins. Numerous malignancies, including different forms of leukemia, are linked to Lnc-RNAs. It is verified that the carcinogenesis and growth of a variety of human malignancies are significantly influenced by aberrant lncRNA expression. The body of evidence linking various types of lncRNAs to the etiology of leukemia has dramatically increased during the past ten years. Some lncRNAs are therefore anticipated to function as novel therapeutic targets, diagnostic biomarkers, and clinical outcome predictions. Additionally, these lncRNAs may provide new therapeutic options and insight into the pathophysiology of diseases, particularly leukemia. Thus, this review outlines the present comprehension of leukemia-associated lncRNAs.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Carcinogênese/genética
4.
Neurosci Res ; 203: 18-27, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38103579

RESUMO

In this study, we explored the regulatory role of microRNA miR-101-3p on the zinc finger protein 746 (ZNF746), also known as PARIS, which is implicated in both sporadic and familial forms of Parkinson's disease. In a Parkinson's disease cell model, utilizing SH-SY5Y cells treated with 1-methyl-4-phenylpyridine (MPP+), we observed that miR-101-3p was downregulated, while ZNF746 was upregulated. To investigate the direct impact of miR-101-3p on ZNF746, our team conducted overexpression experiments, successfully reversing ZNF746's expression at both the mRNA and protein levels, as confirmed through quantitative PCR and western blotting. We also performed luciferase assays, providing compelling evidence that ZNF746 is a direct target of miR-101-3p. Additionally, we noted that miR-101-3p overexpression resulted in increased expression of PGC1α, a gene targeted by ZNF746. Functionally, we assessed the implications of miR-101-3p overexpression through MTS assays and flow cytometry, revealing significant promotion of cell viability, inhibition of ROS production, and reduced apoptosis in the Parkinson's disease cell model. In conclusion, this study highlights the role of miR-101-3p in regulating ZNF746 expression and suggests its potential as a therapeutic target for Parkinson's disease. These findings provide valuable molecular insights that could pave the way for innovative treatment strategies in combating this debilitating neurodegenerative disorder.


Assuntos
MicroRNAs , Doença de Parkinson , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Apoptose , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras
5.
Adv Biomed Res ; 12: 120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434942

RESUMO

Background: According to the bioinformatics analyses and previous studies, bone morphogenetic protein receptor type 1B (BMPR1B) dysregulation could remarkably affect breast cancer (BC) status as a potential biomarker and tumor suppressor. Therefore, the analysis of the expression level of BMPR1B and other relevant biological factors such as microRNAs, long non-coding RNAs, downstream proteins in the relevant signaling pathways, and finding the accurate biological mechanism of BMPR1B could be helpful for a better understanding of BC pathogenicity and discovering the new treatment methods and drugs. Materials and Methods: R Studio software (4.0.2) was used for microarray data analyses. GSE31448 dataset was downloaded by GEOquery package and analyzed by limma package. STRING and miRWalk online databases and Cytoscape software were used for interaction analyses. Quantitative measurement of BMPR1B expression level was performed by qRT-PCR experiment. Result: Microarray and real-time PCR analysis revealed that BMPR1B has a significant downregulation in the transforming growth factor (TGF)-beta and bone morphogenic protein (BMP) signaling pathways in BC samples. BMPR1B is a potential diagnostic biomarker, regulated by hsa-miR-181a-5p. Also, BMPR1B regulates the function of BMP2, BMP6, SMAD4, SMAD5, and SMAD6 proteins. Discussion: BMPR1B have a significant role in the development of BC by regulating the potential proteins' function, playing the diagnostic biomarker role, and regulation of TGF-beta and BMP signaling pathways. The high amount of BMPR1B protein helps in increasing the survival rate of the patients.

6.
Biomed Pharmacother ; 164: 114982, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37311278

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is one of the subtypes of breast cancer (BC) that is associated with poor survival rates and failure to respond to hormonal and targeted therapies. OBJECTIVE: The aim of this study was to identify a specific gene at the expression level for TNBC and targeting of this type of breast cancer based on it. Using TCGA database, genes that are particularly high expression in TNBC subtypes compared to other BC subtypes (in terms of receptor status) and normal samples were identified and their sensitivity and specificity were evaluated. Using PharmacoGX and Drug Bank data, drug sensitivity and drug-appropriate genes were identified, respectively. The effects of the identified drug on triple-negative cell lines (MDA-MB-468) were evaluated in comparison with the cell line of other subtypes (MCF7) by apoptosis and MTS tests. RESULTS: Data analyzes showed that the expression level of KCNG1 gene in the TNBC subgroup was significantly higher compared to other BC subtypes from the KCN gene family and ROC results showed that this gene had highest sensitivity and specificity in TNBC subtype. The results of drug resistance and sensitivity showed that an increase in the expression level of KCNG1 was associated with sensitivity to Cisplatin and Oxaliplatin. Moreover, Drug Bank results showed that Guanidine hydrochloride (GuHCl) was a suitable inhibitor for KCNG1. In vitro results showed that the expression level of KCNG1 was higher in MDA-MB-468 compared to MCF7. In addition, the rate of apoptosis in response to GuHCl treatment in MDA-MB-468 cell line as TNBC cell model was higher than MCF7 in the same concentration. CONCLUSION: This study revealed that GuHCl could be a suitable treatment for TNBC subtype by targeting of KCNG1.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Guanidina/farmacologia , Guanidina/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Apoptose , Proliferação de Células
7.
Prog Biophys Mol Biol ; 180-181: 49-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37059270

RESUMO

Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.


Assuntos
Neoplasias do Colo , MicroRNAs , Humanos , Transcriptoma/genética , MicroRNAs/genética , Perfilação da Expressão Gênica , Neoplasias do Colo/genética , Biomarcadores , Redes Reguladoras de Genes
8.
Pathol Res Pract ; 244: 154409, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36931128

RESUMO

Recent findings have shown the significant role of long non-coding RNAs in the pathogenesis of various cancers. In this regard, the variation in the expression of LINC01929 was explored in various cancers to explore its impact on the development of diverse malignancies and cancers. The data of the cancer genome atlas (TCGA) were utilized to evaluate the changes in the expression of LINC01929 in various cancers, as well as its relationship with the patients' survival rate. The co-expression of the genes and data merging of TCGA were utilized to identify the LINC01929-associated pathways. The samples of colorectal, gastric, and breast cancers were also examined by the RT-qPCR to confirm the results and evaluate the expression of LINC01929 in the mentioned cancers. In silico investigations indicated a remarkable enhancement in the expression of LINC01929 within the tumor tissues compared to normal samples in 10 types of cancer. Based on the survival results, the increase in the LINC01929 expression is linked to poor prognosis of bladder, breast, colorectal, kidney, and liver cancers. The gene co-expression network showed the strong co-expression of LINC01929 with genes involved in the metastatic pathways including COL5A1. RT-qPCR findings showed a remarkable increment in the expression level of LINC01929 in the colorectal, gastric, and breast tumor tissues versus the adjacent normal tissues. A significant and strong relationship was also found between the expression of LINC01929 and COL5A1. This study indicated a significant enhancement in the expression level of LINC01929 in various cancer types, accompanied by the mortality rate. Moreover, LINC01929 exhibited a strong co-expression with the metastatic genes such as COL5A1. As an oncogene and regulator of the metastatic pathways, LINC01929 can be a proper candidate for diagnostic and therapeutic purposes.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Prognóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias Hepáticas/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/genética
10.
Iran J Biotechnol ; 21(1): e3211, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36811100

RESUMO

Background: Overexpression of miR-141 and miR-200a is known to be associated with the differentiation of T helper 17 (Th17) cells, which are key players in the pathophysiology of autoimmune disorders. However, the function and governing mechanism of these two microRNAs (miRNAs) in Th17 cell skewing are poorly defined. Objectives: The aim of the present study was to identify the common upstream transcription factors and downstream target genes of miR-141 and miR-200a to obtain a better insight into the possible dysregulated molecular regulatory networks driving miR-141/miR-200a-mediated Th17 cell development. Materials and Methods: A consensus-based prediction strategy was applied for in-silico identification of potential transcription factors and putative gene targets of miR-141 and miR-200a. Thereafter, we analyzed the expression patterns of candidate transcription factors and target genes during human Th17 cell differentiation by quantitative real-time PCR and examined the direct interaction between both miRNAs and their potential target sequences using dual-luciferase reporter assays. Results: According to our miRNA-based and gene-based interaction network analyses, pre-B cell leukemia homeobox (PBX1) and early growth response 2 (EGR2) were respectively taken into account as the potential upstream transcription factor and downstream target gene of miR-141 and miR-200a. There was a significant overexpression of the PBX1 gene during the Th17 cell induction period. Furthermore, both miRNAs could directly target EGR2 and inhibit its expression. As a downstream gene of EGR2, the suppressor of cytokine signaling 3 (SOCS3) was also downregulated during the differentiation process. Conclusions: These results indicate that activation of the PBX1/miR-141-miR-200a/EGR2/SOCS3 axis may promote Th17 cell development and, therefore, trigger or exacerbate Th17-mediated autoimmunity.

11.
Cancer Cell Int ; 22(1): 339, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344988

RESUMO

INTRODUCTION: Transcription factors (TFs) are essential for many biological processes and regulate the expression of several genes. This study's objective was to analyze the abnormalities in TF expression, their impact on patient prognosis, and related pathways in colorectal cancer (CRC). METHOD: The expression alterations of all TFs were investigated using the cancer genome atlas and GSE39582 data. Clinical data were also used to study the association between TFs expression and patient prognosis through the Cox regression test, and a predictive model of CRC patient survival was constructed based on TFs expression. Co-expression network was used to discover TF-related pathways. To validate the findings, the RT-qPCR method was applied to CRC samples and adjacent normal tissue. RESULTS: The findings revealed that ANKZF1, SALL4, SNAI1, TIGD1, LEF1, FOXS1, SIX4, and ETV5 expression levels increased in both cohorts and were linked to the poor prognosis. NR3C2, KLF4, CASZ1, FOXD2, ATOH1, SALL1, and RORC expression, on the other hand, exhibited a significant decrease, and their increase was related to the good prognosis of patients. The patient mortality risk model based on expression of mentioned TFs revealed that, independent of clinical characteristics, the expression of ANKZF1, LEF1, CASZ1, and ATOH1 could accurately predict patient survival rates. According to the co-expression network, increased transcription factors were linked to metastatic pathways, while decreasing TFs were involved to apoptotic pathways. RT-qPCR findings showed that FOXS1 expression was markedly overexpressed in CRC samples. However, in CRC samples, the expression of CASZ1 decreased. CONCLUSION: In CRC, TFs expression of ANKZF1, LEF1, CASZ1 and ATOH1 are deregulated, which are associated with prognosis in patients. According to our findings, changes in the expression of the mentioned TFs have the potential to be considered diagnostic and prognostic biomarkers for CRC patients.

12.
Chem Biol Interact ; 368: 110190, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162454

RESUMO

BACKGROUND: Studies have shown that the CDK5R1 gene could have a part in some types of cancer. This study sought to examine the relationship between CDK5R1 expression and prognosis and medication resistance in 13 commonly occurring cancers. METHOD: The cancer genome atlas data and clinical data were utilized to assess the role of CDK5R1 in malignancies. The expression data of 13 cancers were also integrated and used for the co-expression network. The relationship between CDK5R1 expression and drug resistance and sensitivity was evaluated using pharmacogenomics data. The colorectal cancer (CRC) and breast cancer (BC) were used to confirm the results through the RT-qPCR method. RESULTS: With the exception of gastric cancer, all common malignancies showed an increase in CDK5R1 expression. Also, outcomes of sensitivity and specificity showed that CDK5R1 level could be a really good potential biomarker. Additionally, CDK5R1 expression was higher in CRC and BC samples compared to adjacent normal, according to RT-qPCR data. In six types of tumors and combined data, a poor prognosis was associated with increased CDK5R1 expression. The CDK5R1-associated genes were connected to the primary oncogenic pathways in cancer cells, according to the co-expression network. Also, CDK5R1 level was significantly linked to the resistance and sensitivity of several chemotherapy drugs and caused the highest resistance to cyclophosphamide. CONCLUSION: CDK5R1 expression is upregulated in 12 prevalent cancers and can play an oncogenic role. Also, this gene's expression could be used as a biomarker to predict patient survival and medication resistance.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Humanos , Feminino , Proteínas do Tecido Nervoso/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Oncogenes , Proliferação de Células , Resistência a Medicamentos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética
13.
PPAR Res ; 2022: 6161694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164476

RESUMO

Background: Metabolic associated fatty liver disease (MAFLD) is a complex disease that results from the accumulation of fat in the liver. MAFLD is directly associated with obesity, insulin resistance, diabetes, and metabolic syndrome. PPARγ ligands, including pioglitazone, are also used in the management of this disease. Noncoding RNAs play a critical role in various diseases such as diabetes, obesity, and liver diseases including MAFLD. However, there is no adequate knowledge about the translation of using these ncRNAs to the clinics, particularly in MAFLD conditions. The aim of this study was to identify ncRNAs in the etiology of MAFLD as a novel approach to the therapeutic targets. Methods: We collected human and mouse MAFLD gene expression datasets available in GEO. We performed pathway enrichment analysis of total mRNAs based on KEGG repository data to screen the most potential pathways in the liver of MAFLD human subjects and mice model, and analyzed pathway interconnections via ClueGO. Finally, we screened disease causality of the MAFLD ncRNAs, which were associated with PPARs, and then discussed the role of revealed ncRNAs in PPAR signaling and MAFLD. Results: We found 127 ncRNAs in MAFLD which 25 out of them were strongly validated before for regulation of PPARs. With a polypharmacology approach, we screened 51 ncRNAs which were causal to a subset of diseases related to MAFLD. Conclusion: This study revealed a subset of ncRNAs that could help in more clear and guided designation of preclinical and clinical studies to verify the therapeutic application of the revealed ncRNAs by manipulating the PPARs molecular mechanism in MAFLD.

14.
Int J Biol Macromol ; 219: 779-787, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35940433

RESUMO

Long noncoding RNAs (lncRNAs) as regulatory molecules play important roles in early treatment and diagnosis of cancers. Considering the role of PPARγ in colorectal cancer (CRC) as a tumor suppressor, the GEO database was used to identify candidate genes that affect the activation of PPARγ protein in CRC cell lines. Then were selected 5 genes containing PPARγ response element (PPRE) in up to 4000 bp upstream and were affected by PPARγ protein activation in HT-29 colon cancer cell line using UCSC database. Expression meta-analysis was applied to map the expression network between candidate genes and all known lncRNAs through expression correlation and lncRNAs that correlated with a greater number of candidate genes (R > 0.5, P.value < 0.001). Moreover, were selected 3 lncRNAs as lncRNAs affected by PPARγ protein activation. Next, the expression levels of candidate genes and lncRNAs were evaluated using RT-qPCR in HT-29 cell line. Results showed a significant increase (FDR <0.05) in the expression level of 5 candidate genes and lncRNAs LINC01133, MBNL1-AS, LOC100288911 after treatment with pioglitazone as PPARγ ligand compared to the untreated group in HT-29 cells. Although additional tests are needed to confirm bioinformatics predictions, it can be concluded that increased expression of PPARγ may increase genes and lncRNAs expression. In summary, this study could be suggested identifying lncRNAs affected by PPARγ activation could be a new strategy in understanding the function and activity of PPARγ in colon cancer.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , RNA Longo não Codificante , Neoplasias do Colo/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Ligantes , PPAR gama/genética , PPAR gama/metabolismo , Pioglitazona , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
15.
Biomed Pharmacother ; 153: 113338, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35779418

RESUMO

Obesity is one of the risk factors concerns of colorectal cancer (CRC), the most common type of gastrointestinal cancer, due to the changing lifestyle and especially diet. There are various molecular pathways associated with obesity and the risk of CRC incidence, such as insulin resistance or elevated plasma free fatty acids, which alter the signaling pathways of intestinal epithelial cells. The aim of this study was to better understand the significance of unsaturated fatty acid biosynthesis on pathogenesis of colon cancer in obese. Based on GSE20931 dataset, obese individuals affected by CRC had higher increased gene expression than non-obese individuals. The analysis showed that in obese individuals, the 16 signaling pathway genes were activated and increased (FDR <0.05) significantly. The biosynthetic pathway of unsaturated fatty acids showed a cross-talk with the arachidonic acid metabolism pathway and the PPAR signaling pathway is influenced and regulated via these pathways. The biosynthetic pathway of unsaturated fatty acids consisting of 22 genes, were analyzed using GEO data and revealed that 4 genes (HSD17B12, TECR, FADS2, ELOVL5) from this pathway were significantly increased (FDR <0.05). These data were validated based on TCGA data (Adj.p.value <0.001). The expression level of candidate genes in HT-29 cells decreased significantly (P.value <0.01), and PPARγ expression increased under linoleic acid treatment (200 µM) compared to control cells. Moreover, in presence of linoleic acid treatment, migration, colony formation, and proliferation decreased (P.value <0.01) in presence of treatment. In summary, the Biosynthesis pathway of unsaturated fatty acids is an interesting and critical pathway in CRC.


Assuntos
Neoplasias Colorretais , Ácidos Graxos Insaturados , Obesidade , Adipogenia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ácidos Graxos Insaturados/biossíntese , Humanos , Resistência à Insulina , Ácido Linoleico , Obesidade/metabolismo
16.
Genes Environ ; 44(1): 16, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581633

RESUMO

BACKGROUND: The most frequent malignancy in women is breast cancer (BC). Gastric cancer (GC) is also the leading cause of cancer-related mortality. Long non-coding RNAs (lncRNAs) are thought to be important neurotic regulators in malignant tumors. In this study, we aimed to evaluate the expression level of NEAT1 and the interaction of this non-coding RNA with correlated microRNAs, lncRNAs, and mRNAs or protein coding genes, experimentally and bioinformatically. METHODS: For the bioinformatics analyses, we performed RNA-RNA and protein-protein interaction analyses, using ENCORI and STRING. The expression analyses were performed by five tools: Microarray data analysis, TCGA data analysis (RNA-seq, R Studio), GEPIA2, ENCORI, and real-time PCR experiment. qRT-PCR experiment was performed on 50 GC samples and 50 BC samples, compared to adjacent control tissue. RESULTS: Based on bioinformatics and experimental analyses, lncRNA NEAT1 have a significant down-regulation in the breast cancer samples with tumor size lower than 2 cm. Also, it has a significant high expression in the gastric cancer patients. Furthermore, NEAT1 have a significant interaction with XIST, hsa-miR-612 and MTRNR2L8. High expression of NEAT1 have a correlation with the lower survival rate of breast cancer samples and higher survival rate of gastric cancer patients. CONCLUSION: This integrated computational and experimental investigation revealed some new aspects of the lncRNA NEAT1 as a potential prognostic biomarker for the breast cancer and gastric cancer samples. Further investigations about NEA1 and correlated mRNAs, lncRNAs, and microRNAs - specially the mentioned RNAs in this study - can lead the researchers to more clear information about the role of NEAT1 in the breast cancer and gastric cancer.

17.
Reprod Health ; 19(1): 100, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459174

RESUMO

BACKGROUND: Endometriosis, as chronic estrogen-dependent disease, is defined by the presence of endometrial-like tissue outside the uterus. Proliferation of endometrial tissue and neoangiogenesis are critical factors in development of endometriosis. Hence, vascular endothelial growth factor (VEGF) as well as insulin-like growth factor 1 and 2 (IGF1, 2) may be involved as inducers of cellular proliferation or neoangiogenesis. Imprinted long noncoding RNA H19 (lncRNA H19) has been suggested to be involved in pathogenesis of endometriosis via regulation of cellular proliferation and differentiation. Epigenetic aberrations appear to play an important role in its pathogenesis. The present study was designed to elucidate VEGF, IGF1, IGF2 and H19 lncRNA genes expression and epigenetic alterations of differentially methylated region (DMR) of H19 (H19-DMR) regulatory region in endometrial tissues of patients with endometriosis, in comparison with control women. METHODS: In this case-control study, 24 women with and without endometriosis were studied for the relative expression of VEGF, IGF1, IGF2 and H19 lncRNA genes using real-time polymerase chain reaction (PCR) technique. Occupancy of the MeCP2 on DMR region of H19 gene was assessed using chromatin immunoprecipitation (ChIP), followed by real-time PCR. RESULTS: Genes expression profile of H19, IGF1 and IGF2 was decreased in eutopic and ectopic endometrial tissues of endometriosis group, compared to the control tissues. Decreased expression of H19 in ectopic samples was significant in comparison with the controls (P < 0.05). Gene expression of VEGF was increased in eutopic tissues of endometriosis group, compared to control group. Whereas its expression level was lower in ectopic lesions versus eutopic and control endometrial samples. ChIP analysis revealed significant and nearly significant hypomethylation of H19-DMR region II in eutopic and ectopic samples, compared to the control group respectively. This epigenetic change was aligned with expression of IGF2. While methylation of H19-DMR region I was not significantly different between the eutopic, ectopic and control endometrial samples. CONCLUSION: These data showed that VEGF, IGF1, IGF2 and H19 lncRNA genes expression and epigenetic alterations of H19 lncRNA have dynamic role in the pathogenesis of endometriosis, specifically in the way that hypomethylation of H19-DMR region II can be involved in IGF2 dysregulation in endometriosis.


Assuntos
Endometriose , RNA Longo não Codificante , Estudos de Casos e Controles , Endometriose/genética , Epigênese Genética , Feminino , Expressão Gênica , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/genética , Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
J Biochem Mol Toxicol ; 36(6): e23041, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35343021

RESUMO

Doxorubicin (Dox) is an antitumor agent widely used in cancer therapy, with notable side effects of cardiac toxicity. Peroxisome proliferator-activated receptor γ (PPARγ), is a transcriptional factor with antiapoptotic and anti-inflammatory properties. Recently we indicated that cardiac toxicity of Dox was due to upregulation of miR-130a and further suppressive effect on cardiac Pparγ in vitro. In this study, we extended our proposed hypothesis in vivo. To achieve this, pioglitazone (Pio) and GW9662 were used as the specific agonist and antagonist of Pparγ to treat Dox-injected mice. Heart function, apoptosis, and inflammation in heart tissue were studied. Pretreatment of Dox-injected mice with Pio resulted in elevated expression of Pparγ and suppression of miR-130a. However, GW9662 pretreatment was unable to increase miR-130a expression. Pio pretreatment led to partially cardiac toxicity limitation of Dox whereas GW9662 caused heart damage. Finally, our observation determined that activation of Pparγ was not adequate to reverse the Dox-induced toxicity completely.


Assuntos
MicroRNAs , PPAR gama , Animais , Anti-Inflamatórios/farmacologia , Apoptose , Cardiotoxicidade/etiologia , Regulação para Baixo , Doxorrubicina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , PPAR gama/metabolismo , Pioglitazona/farmacologia
19.
Stem Cell Rev Rep ; 18(7): 2262-2278, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35320512

RESUMO

Annually chronic liver diseases cause two million death worldwide. Although liver transplantation (LT) is still considered the best therapeutic option, the limited number of donated livers and lifelong side effects of LT has led researchers to seek alternative therapies. Tissue engineering (TE) as a promising method is considered for liver repair and regeneration. TE uses natural or synthetic scaffolds, functional somatic cells, multipotent stem cells, and growth factors to develop new organs. Biological scaffolds are notable in TE because of their capacity to mimic extracellular matrices, biodegradability, and biocompatibility. Moreover, natural scaffolds are classified based on their source and function in three separate groups. Hemostat-based scaffolds as the first group were reviewed for their application in coagulation in liver injury or surgery. Furthermore, recent studies showed improvement in the function of biological hydrogels in liver regeneration and vascularity. In addition, different applications of natural scaffolds were discussed and compared with synthetic scaffolds. Finally, we focused on the efforts to improve the performance of decellularized extracellular matrixes for liver implantation.


Assuntos
Regeneração Hepática , Alicerces Teciduais , Matriz Extracelular , Hidrogéis , Engenharia Tecidual/métodos
20.
Med Oncol ; 39(5): 57, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35150347

RESUMO

Investigating the specific pathways and their relation with survival, mutation, sensitivity, and resistance to various drugs in different stages of colorectal cancer (CRC) could be effective in cancer treatment. In this study, identifying the specific pathways in each stage of CRC compared to other stages was considered via meta-analytic methodology. The Cancer Genome Atlas (TCGA) data with gene set enrichment analysis (GSEA) software, and CRC RNA-Seq data were used to enrich and determine specific pathways as well as to evaluate the expression level of TOP RANK genes. In addition, The Cancer Cell Line Encyclopedia (CCLE) data were used to correlate candidate genes with drug resistance. Finally, using Gene Expression Omnibus (GEO) data, drugs that could affect the expression level of these genes were identified. Three specific molecular pathways, including oxidative phosphorylation (OXPHOS), regulation of transporter activity (RTA), and negative regulation of transmembrane receptor protein serine threonine kinase (NRSTK) have been identified as hub pathways for stages II, III, and IV, respectively (P < 0.01). The expression level of TOP RANK genes in each stage increased on average twice compared to other stages (P < 0.01), and CCNB1, DKK1, NOG genes were associated with survival in stages II and IV, respectively (P < 0.01). The expression of some selected genes had a correlation with drug resistance and sensitivity (P < 0.05). GEO data revealed that gamma-tocotrienol (g-T3), NSC319726, and Casiopeina Cas-II-gly may reduce the expression of, NDUFAF1, CCNB1, DKK1 genes, respectively (P < 0.01). Specific pathways and TOP RANK genes could lead to cancer progression and malignancy, resistance to chemotherapy drugs, poor survival in patients, and metastasis. Therefore, identification and targeting these pathways at each stage could be crucial in inhibiting progression at different stages of CRC.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genes Neoplásicos , Neoplasias Colorretais/patologia , Simulação por Computador , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA