Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Pathol Res Pract ; 258: 155332, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38696856

RESUMO

Necroptosis can either be the cause of tumorigenesis or it can impede its process. Recently, it has been proved that long non-coding RNAs (lncRNAs) have different crucial roles at cellular level, especially on cell death. Regarding the important role of necroptosis and lncRNAs in the pathogenesis of different cancers, especially pituitary adenomas (PAs), we assessed expression levels of two necroptosis related genes, namely TRADD and BIRC2, in addition to three related lncRNAs, namely FLVCR1-DT, MAGI2-AS3, and NEAT1 in PAs compared with adjacent normal tissues (ANTs). TRADD had no significant difference between two groups; however, BIRC2, FLVCR1-DT, MAGI2-AS3, and NEAT1 were upregulated in PAs compared to ANTs (Expression ratios [95% CI] = 2.3 [1.47-3.6], 2.13 [1.02-4.44], 3.01 [1.76-5.16] and 2.47 [1.37-4.45], respectively). When taking into account different types of PAs, significant upregulation of BIRC2, MAGI2-AS3 and NEAT1 was recorded in non-functioning PAs compared with corresponding ANTs (Expression ratios [95% CI] =1.9 [1.04-3.43], 2.69 [1.26-5.72] and 2.22 [0.98-5.01], respectively). Additionally, higher levels of BIRC2 were associated with higher flow of CSF (P value=0.048). Moreover, higher Knosp classified tumors had lower levels of BIRC2 (P value=0.001). Finally, lower levels of MAGI2-AS3 were associated with larger tumor size (P value=0.006). NEAT1 expression was correlated with FLVCR1-DT and TRADD. TRADD expression was correlated with FLVCR1-DT. Additional correlation was observed between expression of BIRC2 and MAGI2-AS3. In sum, this study provides evidence that dysregulated levels of studied genes could contribute to the pathogenesis of pituitary tumors.

2.
Biochem Biophys Rep ; 38: 101725, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38711550

RESUMO

Despite past research linking HLF mutations to cancer development, no pan-cancer analyses of HLF have been published. As a result, we utilized multiple databases to illustrate the potential roles of HLF in diverse types of cancers. Several databases were used to assess HLF expression in the TCGA cancer samples. Additional assessments were undertaken to investigate the relationship between HLF and overall survival, immune cell infiltration, genetic alterations, promoter methylation, and protein-protein interaction. HLF's putative roles and the relationship between HLF expression and drug reactivity were investigated. HLF expression was shown to be lower in tumor tissues from a variety of malignancies when compared to normal tissues. There was a substantial link found between HLF expression and patient survival, genetic mutations, and immunological infiltration. HLF influenced the pathways of apoptosis, cell cycle, EMT, and PI3K/AKT signaling. Abnormal expression of HLF lowered sensitivity to numerous anti-tumor drugs and small compounds. According to our findings, reduced HLF expression drives cancer growth, and it has the potential to be identified as a vital biomarker for use in prognosis, immunotherapy, and targeted treatment of a range of malignancies.

3.
Avicenna J Med Biotechnol ; 16(2): 68-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618505

RESUMO

Coagulation factor VIII (FVIII) is an essential cofactor in the coagulation cascade, encoded by the F8 gene on the long arm of chromosome X (Xq28). FVIII is normally circulated in complex with Von Willebrand factor (VWF) and has relevant emerging extracoagulative functions. Dysregulation of FVIII is associated with tumor progression, and could be used as a novel biomarker for tumor screening and monitoring. In breast cancer, bladder cancer, colorectal carcinoma, esophageal carcinoma, hepatocellular carcinoma and lung cancer, F8 is regarded as an oncogene. In coronary heart disease, hemophilia A and liver disease, F8 dysregulation has been recognized as a potential biomarker for disease diagnosis and prognosis. However, the basis of these differential expression levels remains to be understood. In this review, which is a mixture of literature review and bioinformatics analysis we described the biological functions and characteristics of FVIII, and also its expression level in non-malignant disorders and various cancers.

4.
Pathol Res Pract ; 256: 155277, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579577

RESUMO

MicroRNAs (miRNAs) have essential roles in the etiology of breast cancer and are regarded as possible markers in this malignancy. In order to find new markers for breast cancer, the current study has measured expression level of four miRNAs, namely miR-125a, miR-106b, miR-96 and miR-92a-3p in the paired breast samples. Expression levels of miR-125a and miR-106b were higher in tumoral tissues compared with control tissues (Expression ratios (95% CI) = 4.01 (1.96-8.19) and 3.9 (1.95-7.81); P values = 0.0005 and 0.0003, respectively). miR-106b and miR-125a differentiated between malignant and non-malignant tissues with AUC values of 0.7 and 0.67, respectively. We detected association between expression of miR-106b and clinical stage (P = 0.03), in a way that its expression was the lowest in the advanced stages. Finally, significant relationships were found between miR-96 and miR-125a in both tumoral and non-tumoral specimens (ρ = 0.76 and 0.69, respectively). This nonparametric measure of rank correlation also showed relationship between miR-106b and miR-96 in both sets of samples (ρ = 0.63 and 0.61, respectively). Cumulatively, the assessed miRNAs, particularly miR-125a and miR-106b are putative targets for further expression and functional assays in breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Feminino , Humanos , Biomarcadores , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Blood Res ; 59(1): 4, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38485838

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy with an unfavorable outcome. The present research aimed to identify novel biological targets for AML diagnosis and treatment. In this study, we performed an in-silico method to identify antisense RNAs (AS-RNAs) and their related co-expression genes. GSE68172 was selected from the AML database of the Gene Expression Omnibus and compared using the GEO2R tool to find DEGs. Antisense RNAs were selected from all the genes that had significant expression and a survival plot was drawn for them in the GEPIA database, FOXD2-AS1 was chosen for further investigation based on predetermined criteria (logFC ≥|1| and P < 0.05) and its noteworthy association between elevated expression level and a marked reduction in the overall survival (OS) in patients diagnosed with AML. The GEPIA database was utilized to investigate FOXD2-AS1-related co-expression and similar genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene ontology (GO) function analysis of the mentioned gene lists were performed using the DAVID database. The protein-protein interaction (PPI) network was then constructed using the STRING database. Hub genes were screened using Cytoscape software. Pearson correlation analysis was conducted using the GEPIA database to explore the relationship between FOXD2-AS1 and the hub genes. The transcription of the selected coding and non-coding genes, including FOXD2-AS1, CDC45, CDC20, CDK1, and CCNB1, was validated in 150 samples, including 100 primary AML non-M3 blood samples and 50 granulocyte colony stimulating factor (G-CSF)-mobilized healthy donors, using quantitative Real-Time PCR (qRT-PCR). qRT-PCR results displayed significant upregulation of lnc-FOXD2-AS1, CDC45, and CDK1 in primary AML non-M3 blood samples compared to healthy blood samples (P = 0.0032, P = 0.0078, and P = 0.0117, respectively). The expression levels of CDC20 and CCNB1 were not statistically different between the two sets of samples (P = 0.8315 and P = 0.2788, respectively). We identified that AML patients with upregulation of FOXD2-AS1, CDK1, and CDC45 had shorter overall survival (OS) and Relapse-free survival (RFS) compared those with low expression of FOXD2-AS1, CDK1, and CDC45. Furthermore, the receiver operating characteristic (ROC) curve showed the potential biomarkers of lnc -FOXD2-AS1, CDC45, and CDK1 in primary AML non-M3 blood samples. This research proposed that the dysregulation of lnc-FOXD2-AS1, CDC45, and CDK1 can contribute to both disease state and diagnosis as well as treatment. The present study proposes the future evolution of the functional role of lnc-FOXD2-AS1, CDC45, and CDK1 in AML development.

6.
Biochem Genet ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460087

RESUMO

The excessive production of reactive oxygen species and weakening of antioxidant defense system play a pivotal role in the pathogenesis of different diseases. Extensive differences observed among individuals in terms of affliction with cancer, cardiovascular disorders, diabetes, bacterial, and viral infections, as well as response to treatments can be partly due to their genomic variations. In this work, we attempted to predict the effect of SNPs of the key genes of antioxidant defense system on their structure, function, and expression in relation to COVID-19 pathogenesis using in silico tools. In addition, the effect of SNPs on the target site binding efficiency of SNPs was investigated as a factor with potential to change drug response or susceptibility to COVID-19. According to the predicted results, only six missense SNPs with minor allele frequency (MAF) ≥ 0.1 in the coding region of genes GPX7, GPX8, TXNRD2, GLRX5, and GLRX were able to strongly affect their structure and function. Our results predicted that 39 SNPs with MAF ≥ 0.1 led to the generation or destruction of miRNA-binding sites on target antioxidant genes from GPX, PRDX, GLRX, TXN, and SOD families. The results obtained from comparing the expression profiles of mild vs. severe COVID-19 patients using GEO2R demonstrated a significant change in the expression of approximately 250 miRNAs. The binding efficiency of 21 of these miRNAs was changed due to the elimination or generation of target sites in these genes. Altogether, this study reveals the fundamental role of the SNPs of antioxidant defense genes in COVID-19 progression and susceptibility of individuals to this virus. In addition, different responses of COVID-19 patients to antioxidant defense system enhancement drugs may be due to presence of these SNPs in different individuals.

7.
Noncoding RNA Res ; 9(2): 367-375, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511058

RESUMO

Circular RNAs (circRNAs) characterize a novel kind of regulatory RNAs distinguished by great evolutionary conservation and constancy. Although their exact role in malignancies is not fully understood, they mainly work through specific axes. Circular RNA/miRNA/mRNA axes affect the pathogenesis of human cancers including breast cancer. We assessed the expression and function of circ_0009910/miR-145-5p/MUC1 axis in Breast Cancer tissues and MCF-7 cells. Expression levels of circ_0009910 and MUC1 were notably increased in breast cancer tissues compared with control tissues, parallel with the down-regulation of miR-145-5p. Clinicopathological analysis indicated that up-regulation of circ_0009910 in breast tumors is related to invasion of the tumor to lymph node (P value = 0.011). Also, the downregulation of miR-145-5p was significantly correlated with tumor invasion to lymph nodes (P value = 0.04) and HER2-negative tumors (P value = 0.037). Finally, overexpression of MUC1 was correlated with age under 45 years (P value = 0.002). More importantly, circ_0009910-siRNA decreased the proliferation and migration ability of breast cancer cells, enhanced expression of miR-145-5p, and decreased levels of MUC1. Taken together, the circ_0009910/miR-145-5p/MUC1 axis has been demonstrated to affect the pathogenesis of breast cancer and might provide a target for breast cancer treatment.

8.
Genes Nutr ; 19(1): 5, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475720

RESUMO

A major revelation of genome-scale biological studies in the post-genomic era has been that two-thirds of human genes do not encode proteins. The majority of non-coding RNA transcripts in humans are long non-coding RNA (lncRNA) molecules, non-protein-coding regulatory transcripts with sizes greater than 500 nucleotides. LncRNAs are involved in nearly every aspect of cellular physiology, playing fundamental regulatory roles both in normal cells and in disease. As result, they are functionally linked to multiple human diseases, from cancer to autoimmune, inflammatory, and neurological disorders. Numerous human conditions and diseases stem from gene-environment interactions; in this regard, a wealth of reports demonstrate that the intake of specific and essential nutrients, including vitamins, shapes our transcriptome, with corresponding impacts on health. Vitamins command a vast array of biological activities, acting as coenzymes, antioxidants, hormones, and regulating cellular proliferation and coagulation. Emerging evidence suggests that vitamins and lncRNAs are interconnected through several regulatory axes. This type of interaction is expected, since lncRNA has been implicated in sensing the environment in eukaryotes, conceptually similar to riboswitches and other RNAs that act as molecular sensors in prokaryotes. In this review, we summarize the peer-reviewed literature to date that has reported specific functional linkages between vitamins and lncRNAs, with an emphasis on mammalian models and humans, while providing a brief overview of the source, metabolism, and function of the vitamins most frequently investigated within the context of lncRNA molecular mechanisms, and discussing the published research findings that document specific connections between vitamins and lncRNAs.

9.
Mol Biol Rep ; 51(1): 437, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520572

RESUMO

Polycystic ovary syndrome (PCOS) is a disorder resulted from interactions between genetic and environmental factors. Based on the importance of epigenetic factors in the pathoetiology of PCOS, the current review focused on identification of circular RNAs (circRNAs) that are involved in PCOS through acting as molecular sponges for microRNAs (miRNAs). The literature search led to identification of circ_0043533/miR-1179, circ_0030018/miR-136, circ_FURIN/miR-423-5p, circ-FURIN/miR-195-5p, circ_0043532/miR-182, circ_RANBP9/miR-136-5p, circRHBG/miR-515-5p, circMTO1/miR-320b, circASPH/miR-375, circPSMC3/miR-296-3p, circLDLR/miR-1294, circPUM1/miR-760, and hsa_circ_0118530/miR-136 as molecular axes contributing to the pathogenesis of PCOS. To set the stage for future research on the role of the ceRNA network in PCOS, in-silico analyses were performed using miRWalk, miRNet, and miRDIP databases. miRWalk identified 80 genes regulated by 5 miRNAs, miRNet revealed 6449 circRNAs potentially controlling 11 miRNAs, and miRDIP identified 11 miRNAs associated with 35 human pathways. These targets can be used in the treatment options, design of personalized medicine and prediction of prognosis of PCOS.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Feminino , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Furina , Síndrome do Ovário Policístico/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Endógeno Competitivo
10.
Pathol Res Pract ; 255: 155188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330620

RESUMO

KCNQ1OT1 is an lncRNA located within KCNQ1 gene on chromosome 11p15.5. This lncRNAs participates in the pathogenesis of a diversity of cancers as well as non-cancerous conditions. In most types of cancers, KCNQ1OT1 is regarded as an oncogene. In a wide array of cancers, high level of KCNQ1OT1 is associated with lower overall survival time. This lncRNA has been found to adsorb a variety of miRNAs, namely miR-15a, miR-211-5p, hsa-miR-107, miR-145, miR-34a, miR-204-5p, miR-129-5p, miR-372-3p, miR-491-5p, miR-153, miR-185-5p, miR-124-3p, miR-211-5p, miR-149, miR-148a-3p, miR-140-5p, miR-125b-5p, miR-9, miR-329-3p, miR-760, miR-296-5p, miR-3666 and miR-129-5p, thus regulating the downstream targets of these miRNAs. In this manuscript, our attention is on this lncRNA and its biomolecular roles in human cancers and other disorders. KCNQ1OT1 plays significant roles in the tumorigenesis and may function as a prospective target for cancer therapy.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , MicroRNAs/genética , Neoplasias/genética , RNA Longo não Codificante/genética
11.
Cancer Rep (Hoboken) ; 7(2): e1970, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38351531

RESUMO

BACKGROUND: Lung cancer is a major cause of cancer-related mortality worldwide, with a 5-year survival rate of approximately 22%. Cisplatin is one of the standard first-line chemotherapeutic agents for non-small cell lung cancer (NSCLC), but its efficacy is often limited by the development of resistance. Despite extensive research on the molecular mechanisms of chemoresistance, the underlying causes remain elusive and complex. AIMS: We analyzed three microarray datasets to find the gene signature and key pathways related to cisplatin resistance in NSCLC. METHODS AND RESULTS: We compared the gene expression of sensitive and resistant NSCLC cell lines treated with cisplatin. We found 274 DEGs, including 111 upregulated and 163 downregulated genes, in the resistant group. Gene set enrichment analysis showed the potential roles of several DEGs, such as TUBB2B, MAPK7, TUBAL3, MAP2K5, SMUG1, NTHL1, PARP3, NTRK1, G6PD, PDK1, HEY1, YTHDF2, CD274, and MAGEA1, in cisplatin resistance. Functional analysis revealed the involvement of pathways, such as gap junction, base excision repair, central carbon metabolism, and Notch signaling in the resistant cell lines. CONCLUSION: We identified several molecular factors that contribute to cisplatin resistance in NSCLC cell lines, involving genes and pathways that regulate gap junction communication, DNA damage repair, ROS balance, EMT induction, and stemness maintenance. These genes and pathways could be targets for future studies to overcome cisplatin resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Transdução de Sinais/genética
12.
Pathol Res Pract ; 255: 155193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364650

RESUMO

Pituitary adenomas (PA) include about one third of primary central nervous tumors in adolescent and young adult. Despite extensive research, the underlying mechanism of PA tumorigenesis is still unknown. In the present study, through bioinformatics analysis of a PA-related dataset downloaded from GEO database, we attempted to identify pair(s) of lncRNA/target mRNA whose expression changes may be involved in the tumorigenesis of PAs. For this end, we evaluated expression of a set of bioinformatically obtained genes in 46 PA tissues against adjacent non-tumor pituitary tissues. The bioinformatics step led to selection of four genes for validation through expression assays. Expression levels of HIF1A and MAPK1 were increased in NFPA tissues (P < 0.0001 and =0.0042, respectively). Expression level of BANCR was significantly decreased in tumor tissues (P < 0.0001). However, expression of STAT3 was not meaningfully different between the two tissue types (P = 0.56). Since there was no significant correlation between MAPK1 and BANCR expressions in either tumor or adjacent normal tissues, the regulatory effect of BANCR on MAPK1 was not confirmed. In conclusion, this study offers information about deregulation of bioinformatically identified genes in PA tumors and indicates that further studies in this field is needed to understand the involved molecular mechanisms.


Assuntos
Adenoma , Neoplasias Hipofisárias , Adolescente , Adulto Jovem , Humanos , Neoplasias Hipofisárias/patologia , Adenoma/patologia , Carcinogênese
13.
Pathol Res Pract ; 254: 155101, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211387

RESUMO

FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is a long non-coding RNA being transcribed from a locus on chromosome 1p33. This transcript has been found to be up-regulated in tumor samples of almost all types of malignancies in association with a significant increase in malignant features. FOXD2-AS1 can affect activity of PI3K/AKT, AKT/mTOR, Hippo/YAP, Notch, NRf2, Wnt/ß-catenin, NF-ƙB and ERK/MAPK pathways. Furthermore, it can enhance stem cell properties in cancer cells and prompt epithelial-mesenchymal transition. It is also involved in induction of resistance to a variety of anticancer agents such as adriamycin, cisplatin, 5-fluorouracil, temozolomide and gemcitabine. This article summarizes the impact of FOXD2-AS1 in diverse human disorders.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisplatino , Gencitabina , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
14.
Clin Transl Oncol ; 26(1): 16-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37178445

RESUMO

Recent studies have revealed the impact of microRNAs (miRNAs) in the carcinogenic process. miR-424 is a miRNA whose role in this process is being to be identified. Experiments in the ovarian cancer, cervical cancer, hepatocellular carcinoma, neuroblastoma, breast cancer, osteosarcoma, intrahepatic cholangiocarcinoma, prostate cancer, endometrial cancer, non-small cell lung cancer, hemangioma and gastric cancer have reported down-regulation of miR-424. On the other hand, this miRNA has been found to be up-regulated in melanoma, laryngeal and esophageal squamous cell carcinomas, glioma, multiple myeloma and thyroid cancer. Expression of this miRNA is regulated by methylation status of its promoter. Besides, LINC00641, CCAT2, PVT1, LIN00657, LINC00511 and NNT-AS1 are among lncRNAs that act as molecular sponges for miR-424, thus regulating its expression. Moreover, several members of SNHG family of lncRNAs have been found to regulate expression of miR-424. This miRNA is also involved in the regulation of E2F transcription factors. The current review aims at summarization of the role of miR-424 in the process of cancer evolution and its impact on clinical outcome of patients in order to find appropriate markers for malignancies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Esofágicas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Masculino , Feminino , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , RNA Longo não Codificante/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Linhagem Celular Tumoral
15.
Urol J ; 21(1): 57-73, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37245085

RESUMO

PURPOSE: Prostate cancer is among the most central sources of cancer-related mortalities. In order to find novel candidates for therapeutic strategies in this kind of cancer, we developed an in-silico method for identification of competing endogenous RNA network. METHODS: According to the microarray data analyses between prostate tumor and normal specimens, we attained 1312 differentially expressed (DE)mRNAs, including 778 down-regulated DEmRNAs (such as CXCL13 and BMP5) and 584 up-regulated DEmRNAs (such as OR51E2 and LUZP2), 39 DElncRNAs, including 10 down-regulated DElncRNAs (such as UBXN10-AS1 and FENDRR) and 29 up-regulated DElncRNAs (such as PCA3 and LINC00992) and 10 DEmiRNAs, including 2 down-regulated DEmiRNAs (such as MIR675 and MIR1908) and 8 up-regulated DEmiRNAs (such as MIR6773 and MIR4683). RESULTS: We constructed the ceRNA network between these transcripts. We also evaluated the related signaling pathways and the significance of these RNAs in prediction of survival of patients with prostate cancer. CONCLUSION: This study provides novel candidates for construction of specific treatment routes for prostate cancer.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Receptores Odorantes , Masculino , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Endógeno Competitivo , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
16.
Clin Transl Oncol ; 26(1): 52-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37351806

RESUMO

The MAF bZIP transcription factor G-antisense RNA 1 (MAFG-AS1) is located on chromosome 17. MAFG-AS1 was upregulated in 15 human cancers. MAFG-AS1 not only suppresses 16 miRNAs but also directly impacts 22 protein-coding genes' expression. Notably, abnormal MAFG-AS1 expression is connected to clinicopathological characteristics and a worse prognosis in a variety of cancers. Moreover, MAFG-AS1 takes its part in the tumorigenesis and progression of various human malignancies by suppressing apoptosis and promoting proliferation, migration, invasion, aerobic glycolysis, ferroptosis, angiogenesis, EMT, and metastasis. Besides, it can predict treatment effectiveness in ER + breast cancer, urothelial bladder carcinoma, and liver cancer by functioning as a trigger of resistance to tamoxifen, sorafenib, and cisplatin. This study systematically presents the functions of MAFG-AS1 in various cancers, as well as the findings of bioinformatics analyses of the MAFG-AS1, which should give clear advice for future research.


Assuntos
Neoplasias da Mama , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , Carcinógenos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Antissenso/genética , Neoplasias Hepáticas/genética , Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas Repressoras/genética , Fator de Transcrição MafG/genética , Fator de Transcrição MafG/metabolismo
17.
Pathol Res Pract ; 253: 155006, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056134

RESUMO

Non-functioning pituitary adenomas (NFPAs) are a group of pituitary neuroendocrine tumors that are associated with morbidity. The exact pathophysiological process leading to this pathology is not known. Nerve growth factor (NGF) is a neurotropic factor that might be involved in this process. We used bioinformatics tools to analyze expression of genes in NFPA samples. Our analyses led to identification of NGF-related genes, namely ARC, ID1, and SH3GL3 - as well as one long non-coding RNA (lncRNA) called myocardial infarction associated transcript (MIAT). Then, we assessed their expression in NFPAs and their adjacent non-cancerous samples. While expression levels of SH3GL3 and MIAT were different between NFPA samples and control samples, expressions of ARC and ID1 were not meaningfully different between these two groups of specimens. SH3GL3 was over-expressed in NFPA samples compared with control samples (expression ratio (95% CI)= 8.22 (1.51-44.6), P value= 0.03). Similarly, expression of MIAT was higher in NFPAs compared with controls (expression ratio (95% CI)= 7.7 (1.7-33.6), P value= 0.009). Taken together, we validated the bioinformatics results regarding the expression of SH3GL3 and MIAT. This study provides a deeper understanding of the involvement of these genes in the pituitary tumorigenesis.


Assuntos
Adenoma , Neoplasias Hipofisárias , RNA Longo não Codificante , Humanos , Neoplasias Hipofisárias/patologia , Fator de Crescimento Neural , Adenoma/patologia , RNA Longo não Codificante/genética
18.
Mol Biol Rep ; 51(1): 7, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085365

RESUMO

Circular RNAs (circRNAs) are a group of non-coding transcripts in which a loop structure is shaped via a back splicing procedure. They have central roles in the regulation of gene expression. hsa_circ_0008285, alternatively named as circCDYL, is a circular RNA originated from the exon 4 of CDYL gene. It is produced by a back-splice incident and is mainly located in the cytoplasm. It has no internal ribosome entry site, open reading frame and intronic sequences. CircCDYL dysregulation has been reported in the malignant conditions including multiple myeloma, mantle cell lymphoma, breast cancer, non-small cell lung cancer, Wilms tumor, bladder cancer, colon cancer, and hepatocellular carcinoma. It also has an emerging role in the pathophysiology of non-malignant conditions including myocardial infarction, gestational diabetes mellitus, membranous nephropathy, and abdominal aortic aneurysm. In the current study, we summarize the emerging roles of circCDYL in malignant and non-malignant conditions.


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Renais , Neoplasias Pulmonares , MicroRNAs , Adulto , Feminino , Humanos , Neoplasias Pulmonares/genética , MicroRNAs/genética , RNA Circular/genética
19.
Mol Biol Rep ; 51(1): 33, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38155334

RESUMO

BACKGROUND: Human mesenchymal stem/stromal cells (hMSCs) are known for their pronounced therapeutic potential; however, they are still applied in limited clinical cases for several reasons. ROS-mediated oxidative stress is among the chief causes of post-transplantation apoptosis and death of hMSCs. It has been reported that a strategy to protect hMSCs against ROS is to pretreat them with antioxidants. Oleoylethanolamide (OEA) is a monounsaturated fatty acid derived from oleic acid and it has many protective properties, including anti-obesity, anti-inflammatory, and antioxidant effects. OEA is also used as a weight loss supplement; due to its high affinity for the PPAR-α receptor, OEA increases the fat metabolism rate. METHODS AND RESULTS: This study hence assessed the effects of OEA pretreatment on the in vitro survival rate and resistance of hMSCs under oxidative stress as well as the cellular and molecular events in the biology of stem/stromal cells affected by oxidative stress and free radicals. Considering the role of MSCs in adipogenesis and obesity, the expression of the main genes involved in adipogenesis was also addressed in this study. Results revealed that OEA increases the in vitro proliferation of MSCs and inhibits cell apoptosis by reducing the induction of oxidative stress. The results also indicated that OEA exerts its antioxidant properties by both activating the Nrf2/NQO-1/HO-1 signaling pathway and directly combating free radicals. Moreover, OEA can reduce adipogenesis through reducing the expression of PPARγ, leptin and CEBPA genes in hMSCs undergoing adipocyte differentiation. CONCLUSIONS: Thus, OEA protects hMSCs from oxidative stress and reduces adipogenic related genes expression and can be regarded as a therapeutic agent for this purpose.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Adipogenia/genética , Espécies Reativas de Oxigênio/metabolismo , Diferenciação Celular , Estresse Oxidativo , Células-Tronco Mesenquimais/metabolismo , Antioxidantes/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Células Cultivadas
20.
J Cell Mol Med ; 27(24): 4195-4201, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37933082

RESUMO

Non-functioning pituitary adenomas (NFPAs) are benign lesions in the pituitary gland with important morbidities. In this study, based on a bioinformatics analysis to identify the genes and pathways that display significant differences between tumour tissues of NFPA patients and normal pituitary tissues, we selected lncRNAs related to cAMP and oxidative phosphorylation pathways, namely DNAH17-AS1, LINC00706 and SLC25A5-AS1. Then, we aimed to investigate by means of RT-qPCR, the expression of these lncRNAs along with two other lncRNAs, namely CADM3-AS1 and MIR7-3HG in NFPA samples compared to that in healthy tissues adjacent to the tumours. Transcripts of DNAH17-AS1, LINC00706 and MIR7-3HG were lower in NFPA samples compared with controls (Expression ratios (95% CI) = 0.43 (0.23-0.78), 0.58 (0.35-0.96) and 0.58 (0.35-0.96); p-values = 0.009, 0.025 and 0.036, respectively). AUC values of ROC curves of DNAH17-AS1, LINC00706 and MIR7-3HG were 0.62, 0.61 and 0.62, respectively. Expression of CADM3-AS1 was associated with the gender of patients in a way that it was lower in female patients (p-value = 0.04). The level of SLC25A5-AS1 was lower in subjects with disease duration lower than 1 year (p-value = 0.048). We showed dysregulation of three lncRNAs in NFPA tissues and potentiates these lncRNAs as important regulators of pathogenic events in these tumours.


Assuntos
Neoplasias Hipofisárias , RNA Longo não Codificante , Humanos , Feminino , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fosforilação Oxidativa , Hipófise/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA