Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cancer Lett ; 530: 128-141, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35065238

RESUMO

Contrary to high doses irradiation (HDR), the biological consequences of dose irradiation (LDR) in breast cancer remain unclear due to the complexity of human epidemiological studies. LDR induces DNA damage that activates p53-mediated tumor-suppressing pathways promoting DNA repair, cell death, and growth arrest. Monoallelic p53 mutations are one of the earliest and the most frequent genetic events in many subtypes of cancer including ErbB2 breast cancer. Using MMTV/ErbB2 mutant p53 (R172H) heterozygous mouse model we found differential p53 genotype-specific effect of LDR vs. HDR on mammary tumorigenesis. Following LDR, mutant p53 heterozygous tumor cells exhibit aberrant ATM/DNA-PK signaling with defects in sensing of double-strand DNA brakes and deficient DNA repair. In contrast, HDR-induced genotoxic stress is sufficient to reach the threshold of DNA damage that is necessary for wtp53 induced DNA repair and cell cycle arrest. As a result, mutant p53 endows dominant-negative effect promoting mammary tumorigenesis after low-impact DNA damage leading to the selection of a genetically unstable proliferative population, with negligible mutagenic effect on tumors carrying wtp53 allele.


Assuntos
Raios gama/uso terapêutico , Mutação/efeitos da radiação , Proteína Supressora de Tumor p53/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/efeitos da radiação , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Proteína Quinase Ativada por DNA/genética , Feminino , Camundongos , Mutação/genética , Receptor ErbB-2/genética
2.
Breast Cancer Res ; 22(1): 133, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33267874

RESUMO

BACKGROUND: Mutations in one allele of the TP53 gene in early stages are frequently followed by the loss of the remaining wild-type p53 (wtp53) allele (p53LOH) during tumor progression. Despite the strong notion of p53LOH as a critical step in tumor progression, its oncogenic outcomes that facilitate the selective pressure for p53LOH occurrence were not elucidated. METHODS: Using MMTV;ErbB2 mouse model of breast cancer carrying heterozygous R172H p53 mutation, we identified a novel gain-of-function (GOF) activity of mutant p53 (mutp53): the exacerbated loss of wtp53 allele in response to γ-irradiation. RESULTS: As consequences of p53LOH in mutp53 heterozygous cells, we observed profound stabilization of mutp53 protein, the loss of p21 expression, the abrogation of G2/M checkpoint, chromosomal instability, centrosome amplification, and transcriptional upregulation of mitotic kinase Nek2 (a member of Never in Mitosis (NIMA) Kinases family) involved in the regulation of centrosome function. To avoid the mitotic catastrophe in the absence of G2/M checkpoint, cells with centrosome amplification adapt Nek2-mediated centrosomes clustering as pro-survival mutp53 GOF mechanism enabling unrestricted proliferation and clonal expansion of cells with p53LOH. Thus, the clonal dominance of mutp53 cells with p53LOH may represent the mechanism of irradiation-induced p53LOH. We show that pharmacological and genetic ablation of Nek2 decreases centrosome clustering and viability of specifically mutp53 cells with p53LOH. CONCLUSION: In a heterogeneous tumor population, Nek2 inhibition may alter the selective pressure for p53LOH by contraction of the mutp53 population with p53LOH, thus, preventing the outgrowth of genetically unstable, more aggressive cells.


Assuntos
Neoplasias da Mama/genética , Perda de Heterozigosidade/genética , Quinases Relacionadas a NIMA/genética , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Centrossomo/metabolismo , Instabilidade Cromossômica , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Mutação com Ganho de Função , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Perda de Heterozigosidade/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Quinases Relacionadas a NIMA/antagonistas & inibidores , Receptor ErbB-2/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima
3.
Commun Biol ; 2: 436, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799437

RESUMO

Mutations in one allele of the TP53 gene in cancer early stages are frequently followed by the loss of the remaining wild-type allele (LOH) during tumor progression. However, the clinical impact of TP53 mutations and p53LOH, especially in the context of genotoxic modalities, remains unclear. Using MMTV;ErbB2 model carrying a heterozygous R172H p53 mutation, we report a previously unidentified oncogenic activity of mutant p53 (mutp53): the exacerbation of p53LOH after irradiation. We show that wild-type p53 allele is partially transcriptionally competent and enables the maintenance of the genomic integrity under normal conditions in mutp53 heterozygous cells. In heterozygous cells γ-irradiation promotes mutp53 stabilization, which suppresses DNA repair and the cell cycle checkpoint allowing cell cycle progression in the presence of inefficiently repaired DNA, consequently increases genomic instability leading to p53LOH. Hence, in mutp53 heterozygous cells, irradiation facilitates the selective pressure for p53LOH that enhances cancer cell fitness and provides the genetic plasticity for acquiring metastatic properties.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Perda de Heterozigosidade/efeitos da radiação , Mutação , Proteína Supressora de Tumor p53/genética , Animais , Biomarcadores Tumorais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/efeitos da radiação , Dano ao DNA , Modelos Animais de Doenças , Feminino , Raios gama , Instabilidade Genômica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Estadiamento de Neoplasias , Prognóstico , Resultado do Tratamento
4.
Artigo em Inglês | MEDLINE | ID: mdl-32566755

RESUMO

AIM: Colorectal cancer (CRC) is the third leading cancer-related cause of death due to its propensity to metastasize. Epithelial-mesenchymal transition (EMT) is a multistep process important for invasion and metastasis of CRC. Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor highly expressed in differentiated cells of the intestinal epithelium. KLF4 has been shown to play a tumor suppressor role during CRC tumorigenesis - its loss accelerates development and progression of cancer. The present study examined the relationship between KLF4 and markers of EMT in CRC. METHODS: Immunofluorescence staining for KLF4 and EMT markers was performed on archived patient samples after colorectal cancer resection and on colonic tissues of mice with colitis-associated cancer. RESULTS: We found that KLF4 expression is lost in tumor sections obtained from CRC patients and in those of mouse colon following azoxymethane and dextran sodium sulfate (AOM/DSS) treatment when compared to their respective normal appearing mucosa. Importantly, in CRC patient tumor sections, we observed a negative correlation between KLF4 levels and mesenchymal markers including TWIST, ß-catenin, claudin-1, N-cadherin, and vimentin. Similarly, in tumor tissues from AOM/DSS-treated mice, KLF4 levels were negatively correlated with mesenchymal markers including SNAI2, ß-catenin, and vimentin and positively correlated with the epithelial marker E-cadherin. CONCLUSION: These findings suggest that the loss of KLF4 expression is a potentially significant indicator of EMT in CRC.

5.
Cell Death Dis ; 9(6): 621, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29799521

RESUMO

Despite success of ERBB2-targeted therapies such as lapatinib, resistance remains a major clinical concern. Multiple compensatory receptor tyrosine kinase (RTK) pathways are known to contribute to lapatinib resistance. The heterogeneity of these adaptive responses is a significant hurdle for finding most effective combinatorial treatments. The goal of this study was to identify a unifying molecular mechanism whose targeting could help prevent and/or overcome lapatinib resistance. Using the MMTV-ERBB2;mutant p53 (R175H) in vivo mouse model of ERBB2-positive breast cancer, together with mouse and human cell lines, we compared lapatinib-resistant vs. lapatinib-sensitive tumor cells biochemically and by kinome arrays and evaluated their viability in response to a variety of compounds affecting heat shock response. We found that multiple adaptive RTKs are activated in lapatinib-resistant cells in vivo, some of which have been previously described (Axl, MET) and some were novel (PDGFRα, PDGFRß, VEGFR1, MUSK, NFGR). Strikingly, all lapatinib-resistant cells show chronically activated HSF1 and its transcriptional targets, heat shock proteins (HSPs), and, as a result, superior tolerance to proteotoxic stress. Importantly, lapatinib-resistant tumors and cells retained sensitivity to Hsp90 and HSF1 inhibitors, both in vitro and in vivo, thus providing a unifying and actionable therapeutic node. Indeed, HSF1 inhibition simultaneously downregulated ERBB2, adaptive RTKs and mutant p53, and its combination with lapatinib prevented development of lapatinib resistance in vitro. Thus, the kinome adaptation in lapatinib-resistant ERBB2-positive breast cancer cells is governed, at least in part, by HSF1-mediated heat shock pathway, providing a novel potential intervention strategy to combat resistance.


Assuntos
Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição de Choque Térmico/metabolismo , Lapatinib/farmacologia , Receptor ErbB-2/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Proteólise/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
6.
Gene ; 611: 27-37, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28237823

RESUMO

Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor that regulates diverse cellular processes such as cell growth, proliferation, and differentiation. Since its discovery in 1996, KLF4 has been gaining a lot of attention, particularly after it was shown in 2006 as one of four factors involved in the induction of pluripotent stem cells (iPSCs). Here we review the current knowledge about the different functions and roles of KLF4 in various tissue and organ systems.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Animais , Sequência de Bases , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Homologia de Sequência de Aminoácidos
7.
FASEB J ; 30(12): 4159-4171, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27609772

RESUMO

Alterations in sphingolipid metabolism, especially ceramide and sphingosine 1-phosphate, have been linked to colon cancer, suggesting that enzymes of sphingolipid metabolism may emerge as novel regulators and targets in colon cancer. Neutral ceramidase (nCDase), a key enzyme in sphingolipid metabolism that hydrolyzes ceramide into sphingosine, is highly expressed in the intestine; however, its role in colon cancer has not been defined. Here we show that molecular and pharmacological inhibition of nCDase in colon cancer cells increases ceramide, and this is accompanied by decreased cell survival and increased apoptosis and autophagy, with minimal effects on noncancerous cells. Inhibition of nCDase resulted in loss of ß-catenin and inhibition of ERK, components of pathways relevant for colon cancer development. Furthermore, inhibition of nCDase in a xenograft model delayed tumor growth and increased ceramide while decreasing proliferation. It is noteworthy that mice lacking nCDase treated with azoxymethane were protected from tumor formation. Taken together, these studies show that nCDase is pivotal for regulating initiation and development of colon cancer, and these data suggest that this enzyme is a suitable and novel target for colon cancer therapy.-García-Barros, M., Coant, N., Kawamori, T., Wada, M., Snider, A. J., Truman, J.-P., Wu, B. X., Furuya, H., Clarke, C. J., Bialkowska, A. B., Ghaleb, A., Yang, V. W., Obeid, L. M., Hannun, Y. A. Role of neutral ceramidase in colon cancer.


Assuntos
Ceramidas/metabolismo , Neoplasias do Colo/enzimologia , Metabolismo dos Lipídeos/fisiologia , Ceramidase Neutra/metabolismo , Animais , Colo/metabolismo , Humanos , Masculino , Camundongos Knockout , Esfingolipídeos/metabolismo , beta Catenina/metabolismo
8.
J Vis Exp ; (113)2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27501188

RESUMO

Understanding the role of factors that regulate intestinal epithelial homeostasis and response to injury and regeneration is important. The current literature describes several different methodological approaches to obtain images of intestinal tissues for data validation. In this paper, we delineate a common protocol relating to the derivation and processing of mouse intestinal tissues. Proper fixation of intestinal tissues and Swiss-roll techniques that enhance intestinal epithelial morphology are discussed. Postresection processing and reorientation of embedded intestinal tissues are critical in obtaining paraffin-embedded blocks that display intact intestinal structural features after sectioning. The Swiss-rolling technique helps in histological assessment of the complete intestinal or colonic sections examined. An ability to differentiate intestinal structural features can be vital in quantitative measurements of intestinal inflammation and tumorigenesis along the entire length. Finally, paraffin-embedded sections are ideal for robust processing using both immunohistochemical and immunofluorescent detection methods. Nonfluorescent immunohistochemical sections provide a vibrant image of the tissue detailing different cellular structural features but do not provide flexibility for intracellular co-localization experiments. Multiple fluorescent channels can be appropriately utilized with immunofluorescent detection for co-localization experiments, lending support to mechanistic studies.


Assuntos
Imunofluorescência/métodos , Técnicas Histológicas/métodos , Imuno-Histoquímica/métodos , Intestinos , Animais , Colo , Camundongos
9.
Methods Mol Biol ; 1438: 245-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27150094

RESUMO

Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), significantly increases the risk for development of colorectal cancer. Specifically, dysplasia and cancer associated with IBD (colitis-associated cancer or CAC) develop as a result of repeated cycles of injury and healing in the intestinal epithelium. Animal models are utilized to examine the mechanisms of CAC, the role of epithelial and immune cells in this process, as well as the development of novel therapeutic targets. These models typically begin with the administration of a carcinogenic compound, and inflammation is caused by repeated cycles of colitis-inducing agents. This review describes a common CAC model that utilizes the pro-carcinogenic compound azoxymethane (AOM) followed by dextran sulfate sodium (DSS) which induces the inflammatory insult.


Assuntos
Azoximetano/toxicidade , Colite/induzido quimicamente , Neoplasias do Colo/induzido quimicamente , Sulfato de Dextrana/toxicidade , Animais , Colite/complicações , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
10.
Stem Cell Reports ; 6(6): 815-824, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27237377

RESUMO

In response to ionizing radiation-induced injury, the normally quiescent intestinal stem cells marked by BMI1 participate in the regenerative response. Previously, we established a protective role for Krüppel-like factor 4 (KLF4) in the intestinal epithelium where it reduces senescence, apoptosis, and crypt atrophy following γ-radiation-induced gut injury. We also described a pro-proliferative function for KLF4 during the regenerative phase post irradiation. In the current study, using a mouse model in which Klf4 is deleted from quiescent BMI1(+) intestinal stem cells, we observed increased proliferation from the BMI1(+) lineage during homeostasis. In contrast, following irradiation, Bmi1-specific Klf4 deletion leads to decreased expansion of the BMI1(+) lineage due to a combination of reduced proliferation and increased apoptosis. Our results support a critical role for KLF4 in modulating BMI1(+) intestinal stem cell fate in both homeostasis and the regenerative response to radiation injury.


Assuntos
Intestinos/efeitos da radiação , Fatores de Transcrição Kruppel-Like/genética , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética , Lesões por Radiação/reabilitação , Células-Tronco/efeitos da radiação , Animais , Apoptose/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Contagem de Células , Proliferação de Células/efeitos da radiação , Raios gama , Deleção de Genes , Regulação da Expressão Gênica , Genes Reporter , Mucosa Intestinal/metabolismo , Intestinos/citologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/deficiência , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Regeneração/genética , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
11.
Mol Cancer Res ; 14(4): 385-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26839262

RESUMO

UNLABELLED: The zinc finger transcription factor Krüppel-like factor 4 (KLF4) is frequently downregulated in colorectal cancer. Previous studies showed that KLF4 is a tumor suppressor in the intestinal tract and plays an important role in DNA damage-repair mechanisms. Here, the in vivo effects of Klf4 deletion were examined from the mouse intestinal epithelium (Klf4(ΔIS)) in a genetic or pharmacological setting of colonic tumorigenesis:Apc(Min/⁺) mutation or carcinogen treatment with azoxymethane (AOM), respectively.Klf4 (ΔIS)/Apc (Min/⁺) mice developed significantly more colonic adenomas with 100% penetrance as compared with Apc(Min/⁺) mice with intact Klf4 (Klf4(fl/fl)/Apc (Min/⁺)). The colonic epithelium of Klf4 (ΔIS)/Apc (Min/⁺)mice showed increased mTOR pathway activity, together with dysregulated epigenetic mechanism as indicated by altered expression of HDAC1 and p300. Colonic adenomas from both genotypes stained positive for γH2AX, indicating DNA double-strand breaks. InKlf4 (ΔIS)/Apc (Min/+) mice, this was associated with reduced nonhomologous end joining (NHEJ) repair and homologous recombination repair (HRR) mechanisms as indicated by reduced Ku70 and Rad51 staining, respectively. In a separate model, following treatment with AOM, Klf4 (ΔIS) mice developed significantly more colonic tumors than Klf4 (fl/fl) mice, with more Klf4 (ΔIS) mice harboring K-Rasmutations than Klf4 (fl/fl)mice. Compared with AOM-treated Klf4 (fl/fl)mice, adenomas of treated Klf4 (ΔIS) mice had suppressed NHEJ and HRR mechanisms, as indicated by reduced Ku70 and Rad51 staining. This study highlights the important role of KLF4 in suppressing the development of colonic neoplasia under different tumor-promoting conditions. IMPLICATIONS: The study demonstrates that KLF4 plays a significant role in the pathogenesis of colorectal neoplasia.


Assuntos
Azoximetano/efeitos adversos , Neoplasias do Colo/patologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Mutação , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Células Cultivadas , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/genética , Epigênese Genética , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Fator 4 Semelhante a Kruppel , Camundongos , Neoplasias Experimentais , Serina-Treonina Quinases TOR/metabolismo
12.
PLoS One ; 10(6): e0129314, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26047140

RESUMO

IQ motif-containing GTPase-activating protein 2 (IQGAP2) is a multidomain scaffolding protein that plays a role in cytoskeleton regulation by juxtaposing Rho GTPase and Ca2+/calmodulin signals. While IQGAP2 suppresses tumorigenesis in liver, its role in pathophysiology of the gastrointestinal tract remains unexplored. Here we report that IQGAP2 is required for the inflammatory response in colon. Mice lacking Iqgap2 gene (Iqgap2-/- mice) were resistant to chemically-induced colitis. Unlike wild-type controls, Iqgap2-/- mice treated with 3% dextran sulfate sodium (DSS) in water for 13 days displayed no injury to colonic epithelium. Mechanistically, resistance to colitis was associated with suppression of colonic NF-κB signaling and IL-6 synthesis, along with diminished neutrophil and macrophage production and recruitment in Iqgap2-/- mice. Finally, alterations in IQGAP2 expression were found in colons of patients with inflammatory bowel disease (IBD). Our findings indicate that IQGAP2 promotes inflammatory response at two distinct levels; locally, in colonic epithelium through TLR4/NF-κB signaling pathway, and systemically, via control of maturation and recruitment of myeloid immune cells. This work identifies a novel mechanism of colonic inflammation mediated by signal transducing scaffolding protein IQGAP2. IQGAP2 domain-specific blocking agents may represent a conceptually novel strategy for therapy of IBD and other inflammation-associated disorders, including cancer.


Assuntos
Colite/genética , Colo/metabolismo , Resistência a Medicamentos/genética , Proteínas Ativadoras de ras GTPase/genética , Animais , Western Blotting , Colite/induzido quimicamente , Colite/metabolismo , Colo/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Feminino , Expressão Gênica , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Humanos , Hiperplasia , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Contagem de Leucócitos , Camundongos da Linhagem 129 , Camundongos Knockout , Microscopia de Fluorescência , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteínas Ativadoras de ras GTPase/metabolismo
13.
J Clin Invest ; 125(3): 1347-61, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25689250

RESUMO

Maintenance of mitochondrial structure and function is critical for preventing podocyte apoptosis and eventual glomerulosclerosis in the kidney; however, the transcription factors that regulate mitochondrial function in podocyte injury remain to be identified. Here, we identified Krüppel-like factor 6 (KLF6), a zinc finger domain transcription factor, as an essential regulator of mitochondrial function in podocyte apoptosis. We observed that podocyte-specific deletion of Klf6 increased the susceptibility of a resistant mouse strain to adriamycin-induced (ADR-induced) focal segmental glomerulosclerosis (FSGS). KLF6 expression was induced early in response to ADR in mice and cultured human podocytes, and prevented mitochondrial dysfunction and activation of intrinsic apoptotic pathways in these podocytes. Promoter analysis and chromatin immunoprecipitation studies revealed that putative KLF6 transcriptional binding sites are present in the promoter of the mitochondrial cytochrome c oxidase assembly gene (SCO2), which is critical for preventing cytochrome c release and activation of the intrinsic apoptotic pathway. Additionally, KLF6 expression was reduced in podocytes from HIV-1 transgenic mice as well as in renal biopsies from patients with HIV-associated nephropathy (HIVAN) and FSGS. Together, these findings indicate that KLF6-dependent regulation of the cytochrome c oxidase assembly gene is critical for maintaining mitochondrial function and preventing podocyte apoptosis.


Assuntos
Glomerulosclerose Segmentar e Focal/metabolismo , Infecções por HIV/complicações , Rim/metabolismo , Fatores de Transcrição Kruppel-Like/fisiologia , Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Apoptose , Sítios de Ligação , Células Cultivadas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Glomerulosclerose Segmentar e Focal/patologia , Glomerulosclerose Segmentar e Focal/virologia , Infecções por HIV/metabolismo , HIV-1/fisiologia , Humanos , Rim/patologia , Fator 6 Semelhante a Kruppel , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares , Podócitos/fisiologia , Regiões Promotoras Genéticas
14.
Stem Cell Res ; 14(1): 10-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25460247

RESUMO

Krüppel-like factor 5 (KLF5) is a pro-proliferative transcription factor that is expressed in dividing epithelial cells of the intestinal crypt. Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) has been identified as a stem cell marker in both small intestinal and colonic epithelial cells. To determine whether KLF5 regulates proliferation of intestinal stem cells, we investigated the effects of Klf5 deletion specifically from the intestinal stem cells in adult mice. Mice with inducible intestinal stem cell-specific deletion of Klf5 (Lgr5-Klf5(fl/fl)) were injected with tamoxifen for 5 consecutive days to induce Lgr5-driven Cre expression. Intestinal and colonic tissues were examined by immunohistochemistry at various time points up to 112days following start of tamoxifen treatment. Klf5 is co-localized in the crypt-based columnar (CBC) cells that express Lgr5. By 11days following the start of tamoxifen treatment, Lgr5-positive crypts from which Klf5 was deleted exhibited a loss of proliferation that was accompanied by an increase in apoptosis. Beginning at 14days following the start of tamoxifen treatment, both Klf5 expression and proliferation were re-established in the transit-amplifying epithelial cells but not in the Lgr5-positive CBC cells. By 112days post-treatment, up to 90% of the Lgr5-positive cells from which Klf5 was deleted were lost from the intestinal crypts. These results indicate a critical role for KLF5 in the survival and maintenance of intestinal stem cells.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mucosa Intestinal/metabolismo , Intestinos/patologia , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Tamoxifeno/farmacologia
15.
Am J Physiol Gastrointest Liver Physiol ; 308(2): G121-38, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25414097

RESUMO

Gut radiation-induced injury is a concern during treatment of patients with cancer. Krüppel-like factor 4 (KLF4) is expressed in differentiated villous epithelial cells of the small intestine. We previously showed that KLF4 protects cells from apoptosis following γ-irradiation in vitro. We sought to determine whether KLF4 mediates the small intestinal response to γ-irradiation in vivo. Mice with intestinal epithelium-specific deletion of Klf4 (Klf4(ΔIS)) and control (Klf4(fl/fl)) mice were irradiated with total-body γ-radiation. Following irradiation, the Klf4(ΔIS) mice had significantly increased mortality compared with irradiated Klf4(fl/fl) mice. Immunohistochemistry and immunofluorescence staining were used to assess the morphological changes, levels of proliferation, and apoptosis in the intestinal epithelium. At 96 h following irradiation, there was a regenerative response manifested by an expansion of the proliferative zone in both mouse groups, with the control mice having a higher proliferative activity than the Klf4(ΔIS) group. In addition, there was a significant increase in the number of Klf4/Ki67-copositive cells in the irradiated control mice compared with unirradiated mice. Also, the irradiated Klf4(ΔIS) mice had a significantly higher number of crypt cells positive for apoptosis, p53, and p21 compared with irradiated Klf4(fl/fl) mice. Taken together, our data suggest that Klf4 may function as a radioprotective factor against gastrointestinal syndrome in mice following γ-irradiation by inhibiting apoptosis in the acute response to irradiation and contributing to crypt regeneration.


Assuntos
Mucosa Intestinal/lesões , Mucosa Intestinal/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos da radiação , Modelos Animais de Doenças , Raios gama , Intestinos/efeitos da radiação , Fator 4 Semelhante a Kruppel , Camundongos , Fatores de Transcrição/genética
16.
PLoS One ; 9(12): e113998, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25460165

RESUMO

Sphingosine kinase 1 (SK1), one of two SK enzymes, is highly regulated and has been shown to act as a focal point for the action of many growth factors and cytokines. SK1 leads to generation of sphingosine-1-phosphate (S1P) and potentially the activation of S1P receptors to mediate biologic effects. Our previous studies implicated SK1/S1P in the regulation of inflammatory processes, specifically in inflammatory bowel disease (IBD). These studies were conducted using a total body knockout mouse for SK1 and were unable to determine the source of SK1/S1P (hematopoietic or extra-hematopoietic) involved in the inflammatory responses. Therefore, bone marrow transplants were performed with wild-type (WT) and SK1-/- mice and colitis induced with dextran sulfate sodium (DSS). Irrespective of the source of SK1/S1P, bone marrow or tissue, DSS induced colitis in all mice; however, mice lacking SK1 in both hematopoietic and extra-hematopoietic compartments exhibited decreased crypt damage. Systemic inflammation was assessed, and mice with WT bone marrow demonstrated significant neutrophilia in response to DSS. In the local inflammatory response, mice lacking SK1/S1P in either bone marrow or tissue exhibited decreased induction of cytokines and less activation of STAT3 (signal transducer and activator of transcription 3). Interestingly, we determined that extra-hematopoietic SK1 is necessary for the induction of cyclooxygenase 2 (COX2) in colon epithelium in response to DSS-induced colitis. Taken together our data suggest that hematopoietic-derived SK1/S1P regulates specific aspects of the systemic inflammatory response, while extra-hematopoietic SK1 in the colon epithelium is necessary for the autocrine induction of COX2 in DSS-induced colitis.


Assuntos
Sistema Hematopoético/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Animais , Colite/induzido quimicamente , Colite/patologia , Inflamação/genética , Doenças Inflamatórias Intestinais/patologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
17.
Inflamm Bowel Dis ; 20(5): 811-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24681655

RESUMO

BACKGROUND: Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor expressed in the differentiated epithelial cells lining of the intestine. Under physiological conditions, KLF4 inhibits cell proliferation. Conversely, KLF4 mediates proinflammatory signaling in macrophages and its overexpression in the esophageal epithelium activates cytokines, leading to inflammation-mediated esophageal squamous cell cancer formation in mice. Here, we tested whether KLF4 has a proinflammatory activity in experimental colitis in mice. METHODS: Villin-Cre;Klf4 mice with intestine-specific Klf4 deletion (Klf4) and control mice with floxed Klf4 gene (Klf4) were treated or not with 3% dextran sodium sulfate (DSS) for 7 days to induce colitis. Additionally, WT mice were administered or not, nanoparticles loaded with scrambled or Klf4-siRNA, and concomitantly given DSS. RESULTS: Compared with DSS-treated Klf4 mice, DSS-treated Klf4 mice were significantly less sensitive to DSS-induced colitis. DSS treatment of Klf4 mice induced Klf4 expression in the crypt zone of the colonic epithelium. DSS-treated Klf4 mice had increased proliferation relative to DSS-treated control mice. DSS treatment induced NF-κB signaling pathway in Klf4 mice colon but not Klf4 mice. Additionally, WT mice given DSS and nanoparticle/Klf4-siRNA were less sensitive to colitis and had reduced Klf4 expression and while maintaining the proliferative response in the colonic epithelium. CONCLUSIONS: Our results indicate that Klf4 is an important mediator of DSS-induced colonic inflammation by modulating NF-κB signaling pathway and could be involved in the pathogenesis and/or propagation of inflammatory bowel disease. Thus, Klf4 may represent a novel therapeutic target in inflammatory bowel disease.


Assuntos
Colite/prevenção & controle , Sulfato de Dextrana/toxicidade , Inflamação/prevenção & controle , Mucosa Intestinal/metabolismo , Fatores de Transcrição Kruppel-Like/fisiologia , Proteínas dos Microfilamentos/fisiologia , NF-kappa B/metabolismo , Animais , Western Blotting , Adesão Celular , Proliferação de Células , Células Cultivadas , Colite/induzido quimicamente , Colite/patologia , Modelos Animais de Doenças , Feminino , Imunofluorescência , Técnicas Imunoenzimáticas , Inflamação/induzido quimicamente , Inflamação/patologia , Integrases/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , Nanopartículas/administração & dosagem , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
18.
Dev Biol ; 387(2): 191-202, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24440658

RESUMO

Krüppel-like factor 5 (KLF5) is a pro-proliferative transcriptional regulator primarily expressed in the intestinal crypt epithelial cells. Constitutive intestine-specific deletion of Klf5 is neonatal lethal suggesting a crucial role for KLF5 in intestinal development and homeostasis. We have previously shown Klf5 to play an active role regulating intestinal tumorigenesis. Here we examine the effect of inducible intestine-specific deletion of Klf5 in adult mice. Klf5 is lost from the intestine beginning at day 3 after the start of a 5-day treatment with the inducer tamoxifen. Although the mice have no significant weight loss or lethality, the colonic tissue shows signs of epithelial distress starting at day 3 following induction. Accompanying the morphological changes is a significant loss of proliferative crypt epithelial cells as revealed by BrdU or Ki67 staining at days 3 and 5 after start of tamoxifen. We also observed a loss of goblet cells from the colon and Paneth cells from the small intestine upon induced deletion of Klf5. In addition, loss of Klf5 from the colonic epithelium is accompanied by a regenerative response that coincides with an expansion in the zone of Sox9 expression along the crypt axis. At day 11, both proliferation and Sox9 expression return to baseline levels. Microarray and quantitative PCR analyses reveal an up-regulation of several regeneration-associated genes (Reg1A, Reg3G and Reg3B) and down-regulation of many Klf5 targets (Ki-67, cyclin B, Cdc2 and cyclin D1). Sox9 and Reg1A protein levels are also increased upon Klf5 loss. Lentiviral-mediated knockdown of KLF5 and exogenous expression of KLF5 in colorectal cancer cell lines confirm that Sox9 expression is negatively regulated by KLF5. Furthermore, ChIP assays reveal a direct association of KLF5 with both the Sox9 and Reg1A promoters. We have shown that disruption of epithelial homeostasis due to Klf5 loss from the adult colon is followed by a regenerative response led by Sox9 and the Reg family of proteins. Our study demonstrates that adult mouse colonic tissue undergoes acute physiological changes to accommodate the loss of Klf5 withstanding epithelial damage further signifying importance of Klf5 in colonic homeostasis.


Assuntos
Colo/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Regeneração/genética , Animais , Antineoplásicos Hormonais/farmacologia , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Ciclina B/metabolismo , Ciclina D1/metabolismo , Regulação para Baixo , Células Caliciformes/efeitos dos fármacos , Células HCT116 , Células HEK293 , Humanos , Antígeno Ki-67/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Litostatina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas a Pancreatite , Celulas de Paneth/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição SOX9/metabolismo , Deleção de Sequência , Transdução de Sinais/genética , Tamoxifeno/farmacologia , Regulação para Cima
19.
Mol Cancer ; 12: 89, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23919723

RESUMO

BACKGROUND: Krüppel-like factor 4 (KLF4) is a member of the KLF family of transcription factors and regulates proliferation, differentiation, apoptosis and somatic cell reprogramming. Evidence also suggests that KLF4 is a tumor suppressor in certain cancers including colorectal cancer. We previously showed that KLF4 inhibits cell cycle progression following DNA damage and that mouse embryonic fibroblasts (MEFs) null for Klf4 are genetically unstable, as evidenced by increased rates of cell proliferation, and the presence of DNA double strand breaks (DSBs), centrosome amplification, chromosome aberrations and aneuploidy. METHODS: To determine whether re-expression of Klf4 corrects the observed genetic instability in MEFs null for Klf4 (Klf4(-/-)), we transfected Klf4(-/-)MEFs with Klf4-expressing plasmids and compared the results to wild type (Klf4(+/+)) and untransfected or mock-transfected Klf4(-/-)MEFs. RESULTS: We show that overexpression of Klf4 in Klf4(-/-)MEFs reduced cell proliferation rates and the proportion of cells with DSBs, abnormal centrosome numbers, aneuploidy and micronuclei. In addition, Klf4-transfected Klf4(-/-)MEFs exhibited a more robust DNA damage repair response as demonstrated by the greater rate in disappearance of γ-H2AX and 53BP1 foci following γ-irradiation. CONCLUSION: Taken together these findings provide evidence that KLF4 plays a crucial role in the maintenance of genetic stability by modulating the DNA damage response and repair processes.


Assuntos
Fibroblastos/metabolismo , Instabilidade Genômica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Aneuploidia , Animais , Linhagem Celular , Proliferação de Células , Centrossomo/metabolismo , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Expressão Gênica , Técnicas de Inativação de Genes , Fator 4 Semelhante a Kruppel , Camundongos , Micronúcleos com Defeito Cromossômico , Transfecção
20.
Int J Cancer ; 131(6): 1435-44, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22052467

RESUMO

Germline mutation of the tumor suppressor gene, adenomatous polyposis coli (APC), is responsible for familial adenomatous polyposis (FAP) with nearly 100% risk for colon cancer at an early age. Although FAP is involved in only 1% of all colon cancer cases, over 80% of sporadic cancers harbor somatic mutations of APC. We show here that bromo-noscapine (EM011), a rationally designed synthetic derivative of a natural nontoxic tubulin-binding alkaloid-noscapine, that reduces the dynamics of microtubules, causes a reversible G(2) /M arrest in wild type murine embryonic fibroblasts (MEFs), but an aberrant exit from a brief mitotic block, followed by apoptosis in MEFs after APC deletion with small interfering RNA. Furthermore, both ß-catenin levels and activity fell to half the original levels with a concomitant reduction of cell proliferation-inducing cyclin D1, c-Myc, and induction of cytostatic protein p21 before caspase-3 activation. Additionally, we show a statistically significant reduction in the number of newly emerging intestinal polyps (to 35% compared with untreated mice) as well as the mean size of polyps (to 42% compared with untreated mice) in EM011-treated Apc(Min/+) mice as compared to their sham-treated control littermates. The remaining polyps in the EM011 treated group of Apc(Min/+) mice showed evidence of elevated apoptosis as revealed by immunohistochemistry. We failed to detect any evidence of histopathological and hematological toxicities following EM011 treatment. Taken together, our data are persuasive that a clinical trial of EM011 is possible for the prevention/amelioration of polyposis in FAP patients.


Assuntos
Polipose Adenomatosa do Colo/prevenção & controle , Anticarcinógenos/uso terapêutico , Dioxóis/uso terapêutico , Genes APC/fisiologia , Isoquinolinas/uso terapêutico , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Feminino , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição 4 , beta Catenina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA