Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 303(6): F873-85, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22759395

RESUMO

Factors that initiate cellular damage and trigger the inflammatory response cascade and renal injury are not completely understood after renal ischemia-reperfusion injury (IRI). High-mobility group box-1 protein (HMGB1) is a damage-associated molecular pattern molecule that binds to chromatin, but upon signaling undergoes nuclear-cytoplasmic translocation and release from cells. Immunohistochemical and Western blot analysis identified HMGB1 nuclear-cytoplasmic translocation and release from renal cells (particularly vascular and tubular cells) into the venous circulation after IRI. Time course analysis indicated HMGB1 release into the venous circulation progressively increased parallel to increased renal ischemic duration. Ethyl pyruvate (EP) treatment blocked H(2)O(2) (oxidative stress)-induced HMGB1 release from human umbilical vein endothelial cells in vitro, and in vivo resulted in nuclear retention and significant blunting of HMGB1 release into the circulation after IRI. EP treatment before IRI improved short-term serum creatinine and albuminuria, proinflammatory cyto-/chemokine release, and long-term albuminuria and fibrosis. The renoprotective effect of EP was abolished when exogenous HMGB1 was injected, suggesting EP's therapeutic efficacy is mediated by blocking HMGB1 translocation and release. To determine the independent effects of circulating HMGB1 after injury, exogenous HMGB1 was administered to healthy animals at pathophysiological dose. HMGB1 administration induced a rapid surge in systemic circulating cyto-/chemokines (including TNF-α, eotaxin, G-CSF, IFN-γ, IL-10, IL-1α, IL-6, IP-10, and KC) and led to mobilization of bone marrow CD34+Flk1+ cells into the circulation. Our results indicate that increased ischemic duration causes progressively enhanced HMGB1 release into the circulation triggering damage/repair signaling, an effect inhibited by EP because of its ability to block HMGB1 nuclear-cytoplasmic translocation.


Assuntos
Proteínas de Grupo de Alta Mobilidade/metabolismo , Rim/irrigação sanguínea , Traumatismo por Reperfusão/metabolismo , Proteínas Repressoras/metabolismo , Animais , Células da Medula Óssea/fisiologia , Creatinina/sangue , Citocinas/sangue , Proteínas de Grupo de Alta Mobilidade/sangue , Proteínas de Grupo de Alta Mobilidade/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Piruvatos/farmacologia , Proteínas Repressoras/sangue , Proteínas Repressoras/farmacologia
2.
Am J Physiol Renal Physiol ; 301(4): F802-12, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21775481

RESUMO

Sepsis and its complications are associated with poor clinical outcomes. The circulatory system is a well-known target of lipopolysaccharide (LPS). Recently, several clinical studies documented mobilization of endothelial progenitor cells (EPCs) during endotoxemia, with the probability of patients' survival correlating with the rise in circulating EPCs. This fact combined with endotoxemia-induced vascular injury led us to hypothesize that the developing functional EPC incompetence could impede vascular repair and that adoptive transfer of EPCs could improve hemodynamics in endotoxemia. We used LPS injection to model endotoxemia. EPCs isolated from endotoxemic mice exhibited impaired clonogenic potential and LPS exerted Toll-like receptor 4-mediated cytotoxic effects toward EPCs, which was mitigated by embedding them in hyaluronic acid (HA) hydrogels. Therefore, intact EPCs were either delivered intravenously or embedded within pronectin-coated HA hydrogels. Adoptive transfer of EPCs in LPS-injected mice improved control of blood pressure and reduced hepatocellular and renal dysfunction. Specifically, EPC treatment was associated with the restoration of renal microcirculation and improved renal function. EPC therapy was most efficient when cells were delivered embedded in HA hydrogel. These findings establish major therapeutic benefits of adoptive transfer of EPCs, especially when embedded in HA hydrogels, in mice with LPS-induced endotoxemia, and they argue that hemodynamic and renal abnormalities of endotoxemia are in significant part due to developing incompetence of endogenous EPCs.


Assuntos
Células Endoteliais/transplante , Endotoxemia/terapia , Hidrogéis/administração & dosagem , Rim/irrigação sanguínea , Transplante de Células-Tronco , Animais , Pressão Sanguínea/efeitos dos fármacos , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Microcirculação , Neovascularização Fisiológica , Inclusão do Tecido
3.
Am J Pathol ; 177(2): 873-83, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20558574

RESUMO

We developed an ex vivo approach characterizing renal mesenchymal stem cell (MSC) adhesion to kidney sections. Specificity of MSC adhesion was confirmed by demonstrating a) 3T3 cells displayed 10-fold lower adhesion, and b) MSC adhesion was CXCR4/stromal-derived factor-1 (SDF-1)-dependent. MSC adhesion was asymmetrical, with postischemic sections exhibiting more than twofold higher adhesion than controls, and showed preference to perivascular areas. Pretreating kidney sections with cyclic arginine-glycine-aspartic acid peptide resulted in increased MSC adhesion (by displacing resident cells), whereas blockade of CXCR4 with AMD3100 and inhibition of alpha4beta1(VLA4) integrin or vascular cellular adhesion molecule-1, reduced adhesion. The difference between adhered cells under cyclic arginine-glycine-aspartic acid peptide-treated and control conditions reflected prior occupancy of binding sites with endogenous cells. The AMD3100-inhibitable fraction of adhesion reflected CXCR4-dependent adhesion, whereas maximal adhesion was interpreted as kidney MSC-lodging capacity. MSC obtained from mice overexpressing caveolin-1 exhibited more robust adhesion than those obtained from knockout animals, consistent with CXCR4 dimerization in caveolae. These data demonstrate a) CXCR4/SDF-1-dependent adhesion increases in ischemia; b) CXCR4/SDF-1 activation is dependent on MSC surface caveolin-1; and c) occupancy of MSC binding sites is decreased, while d) capacity of MSC binding sites is expanded in postischemic kidneys. In conclusion, we developed a cell-bait strategy to unmask renal stem cell binding sites, which may potentially shed light on the MSC niche(s) and its characteristics.


Assuntos
Adesão Celular , Rim/citologia , Células-Tronco Mesenquimais/fisiologia , Nicho de Células-Tronco , Células 3T3 , Animais , Sítios de Ligação , Caveolina 1/metabolismo , Células Cultivadas , Quimiocina CXCL12/metabolismo , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Integrinas/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Transgênicos , Receptores CXCR4/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA