Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 471: 115129, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38942084

RESUMO

The central route of streptozotocin (STZ) administration has been introduced as a rat model of sporadic Alzheimer's disease (AD). Curcumin was suggested to possess possible neuroprotective effects, which may be profitable in AD. However, the low bioavailability of curcumin hinders its beneficial effects in clinical studies. Earlier studies suggested that a bovine serum albumin-based nanocurcumin, produces superior neuroprotective effects compared to natural curcumin. In the present study, the protective effect of nanocurcumin in rat model of central STZ induced memory impairment was assessed. In addition, due to the importance of the hippocampus in memory, the amounts of hippocampal active caspase-3, Akt, and CaMKII-α were evaluated. Adult male Wistar rats weighing 250-300 g were used. STZ (icv) was injected during days 1 and 3 (3 mg/kg in divided), and nanocurcumin or curcumin 50 mg/kg/oral gavage was administered daily during days 4-14. Morris water maze training was performed on days 15-17, and the retention memory test was achieved on the 18th day. Following memory assessment, the rats were sacrificed and the hippocampi were used to assess caspase-3 cleavage, Akt, and CaMKII-α signaling. The findings revealed that nanocurcumin ingestion (but not natural curcumin) in the dose of 50 mg/kg was capable to prevent the impairment of water maze learning and memory induced by central STZ. Molecular assessments indicated that STZ treatment increased the caspase-3 cleavage in the hippocampus while deactivating Akt and CaMKII-α. Nanocurcumin reduced caspase-3 cleavage to a non-significant level compared to control group and restored Akt and CaMKII-α within the hippocampus while natural curcumin exerted no significant effect. These findings might suggest that nanocurcumin can restore memory deficit, hippocampal apoptosis as well as Akt and CaMKII-α signaling disruption associated with brain insulin resistance.


Assuntos
Doença de Alzheimer , Apoptose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Curcumina , Modelos Animais de Doenças , Hipocampo , Transtornos da Memória , Fármacos Neuroprotetores , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Transdução de Sinais , Estreptozocina , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Curcumina/farmacologia , Curcumina/administração & dosagem , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estreptozocina/farmacologia , Ratos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Caspase 3/metabolismo
2.
EXCLI J ; 23: 491-508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741725

RESUMO

Alzheimer's disease remains an issue of great controversy due to its pathology. It is characterized by cognitive impairments and neuropsychiatric symptoms. The FDA approved medications for this disease, can only mitigate the symptoms. One reason for the lack of effective medications is the inaccessibility of the brain which is encompassed by the blood-brain barrier, making intranasal (IN) route of administration potentially advantageous. Male Wistar rats underwent stereotaxic surgery to induce an Alzheimer's disease model via intracerebroventricular (ICV) streptozotocin injection, and Carbamylated Erythropoietin-Fc (CEPO-FC), a derivative of Erythropoietin without its harmful characteristics, was administered intranasally for ten consecutive days. Cognition performance for memory and attention was assessed using the Novel Object Recognition Test and the Object-Based Attention Test respectively. Depression like behavior was evaluated using the Forced Swim Test. Western blotting was done on the extracted hippocampus to quantify STIM proteins. Calbindin, PSD-95, Neuroplastin, Synaptophysin and GAP-43 genes were assessed by Realtime PCR. Behavioral tests demonstrated that IN CEPO-FC could halt cognition deficits and molecular investigations showed that, STIM proteins were decreased in Alzheimer's model, and increased after IN CEPO-FC treatment. Calbindin and PSD-95 were downregulated in our disease model and upregulated when treated with IN CEPO-FC. While Neuroplastin, and GAP-43 expressions remained unchanged. This study suggests that IN CEPO-FC in low doses could be promising for improving cognition and synaptic plasticity deficits in Alzheimer's disease and since IN route of administration is a convenient way, choosing IN CEPO-FC for clinical trial might worth consideration. See also the graphical abstract(Fig. 1).

3.
Behav Brain Res ; 454: 114655, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37666305

RESUMO

BACKGROUND: In dementia, synaptic dysfunction appears before neuronal loss. Stem cell therapy could potentially provide a promising strategy for the treatment of dementia models. The carbamylated erythropoietin fusion protein (CEPO-Fc) has shown synaptotrophic effects. This study aimed to determine the efficiency of the combined use of hair follicle stem cells (HFSC) and CEPO-Fc in the basal synaptic transmission (BST) and long-term plasticity (LTP) of chronic cerebral hypoperfusion (CCH) rats. METHODS: We divided 64 adult rats into control, sham, CCH+vehicle, CCH+CEPO, CCH+HFSC, and CCH+HFSC+CEPO groups. The CEPO-Fc was injected three times/week for 30 days. HFSC transplantation was done on days 4, 14, and 21 after surgery. The Morris water maze test and passive avoidance were used to assess memory. BST and LTP were assessed by a field-potential recording of the CA1 region. The hippocampal mRNA expression of IGF-1, TGF-ß1, ß1-Catenine, NR2B, PSD-95, and GSk-3ß was evaluated by quantitative RT-PCR. RESULTS: Following combination therapy, spatial memory retention, and BST showed significant improvement relative to HFSC and CEPO-Fc groups. These effects were also confirmed by recovered mRNA expression of ß1-catenin, TGF-ß1, and NR2B. GSK-3ß expression was downregulated in all treatment groups. The upregulated PSD-95 was identified in HFSC and combination groups compared to the vehicle group. CONCLUSIONS: These findings indicate that the combined use of HFSC and CEPO-Fc may be more advantageous for treating memory disruption in the CCH model than CEPO-Fc or HFSC alone. This type of combination therapy may hopefully lead to a new approach to treatment for dementia.


Assuntos
Isquemia Encefálica , Demência , Animais , Ratos , Glicogênio Sintase Quinase 3 beta , Fator de Crescimento Transformador beta1 , Folículo Piloso , Proteína 4 Homóloga a Disks-Large , Células-Tronco , RNA Mensageiro
4.
Behav Brain Res ; 452: 114585, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37467964

RESUMO

Parkinson's disease (PD) is a progressive and debilitating neurodegenerative disorder associated with motor and non-motor complaints. Dysregulation of neurotrophic factors and related signaling cascades have been reported to be common events in PD which is accompanied by dopaminergic (DA) neuron demise. However, the restoration of neurotrophic factors has several limitations. Bis-(N-monosuccinyl-L-methionyl-L-serine) heptamethylenediamide (BHME) is a dipeptide mimetic of brain-derived neurotrophic factor (BDNF) with reported anti-oxidant and neuroprotective effects in several experimental models. The current study has investigated the effect of BHME on 6-hydroxydopamine (6-OHDA)-caused motor anomalies in Wistar rats. In this regard, rats were treated daily with BHME (0.1 or 1 mg/kg) 1 h after 6-OHDA-caused damage until the twelfth day. Afterwards, motor behavior and DA neuron survival were evaluated via behavioral tests and immunohistochemistry (IHC) staining, respectively. Moreover, the activity of Akt, mitogen-activated protein kinases (MAPKs) family, and Bax/Bcl-2 ratio were evaluated by Western blotting. Our results indicated that BHME prevents motor dysfunction and DA cell death following 6-OHDA injection, and this improvement was in parallel with an enhancement in Akt activity, decrement of P38 phosphorylation, along with a reduction in Bax/Bcl-2 ratio. In conclusion, our findings indicated that BHME, as a mimetic of BDNF, can be considered for further research and is a promising therapeutic agent for PD therapy.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Oxidopamina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dipeptídeos/farmacologia , Dipeptídeos/metabolismo , Dipeptídeos/uso terapêutico , Proteína X Associada a bcl-2/metabolismo , Ratos Wistar , Apoptose , Neurônios Dopaminérgicos , Fármacos Neuroprotetores/uso terapêutico , Substância Negra/metabolismo
5.
Small ; 19(40): e2207626, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37309299

RESUMO

Nanoparticles (NPs) based therapies for Alzheimer's disease (AD) attract interest due to their ability to pass across or bypass the blood-brain barrier. Chitosan (CS) NPs or graphene quantum dots (GQDs) are promising drug carriers with excellent physicochemical and electrical properties. The current study proposes the combination of CS and GQDs in ultrasmall NP form not as drug carriers but as theranostic agents for AD. The microfluidic-based synthesis of the CS/GQD NPs with optimized characteristics makes them ideal for transcellular transfer and brain targeting after intranasal (IN) delivery. The NPs have the ability to enter the cytoplasm of C6 glioma cells in vitro and show dose and time-dependent effects on the viability of the cells. IN administration of the NPs to streptozotocin (STZ) induced AD-like models lead to a significant number of entrances of the treated rats to the target arm in the radial arm water maze (RAWM) test. It shows the positive effect of the NPs on the memory recovery of the treated rats. The NPs are detectable in the brain via in vivo bioimaging due to GQDs as diagnostic markers. The noncytotoxic NPs localize in the myelinated axons of hippocampal neurons. They do not affect the clearance of amyloid ß (Aß) plaques at intercellular space. Moreover, they showed no positive impact on the enhancement of MAP2 and NeuN expression as markers of neural regeneration. The memory improvement in treated AD rats may be due to neuroprotection via the anti-inflammation effect and regulation of the brain tissue microenvironment that needs to be studied.


Assuntos
Doença de Alzheimer , Quitosana , Grafite , Nanopartículas , Pontos Quânticos , Ratos , Animais , Doença de Alzheimer/metabolismo , Quitosana/química , Grafite/uso terapêutico , Peptídeos beta-Amiloides , Microfluídica , Portadores de Fármacos/química , Nanopartículas/química
6.
Steroids ; 190: 109155, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529276

RESUMO

Recent studies have shown that the ephrin/Eph signaling pathway may contribute to the pathology of neuropathic pain. Drugs like progesterone may be used to counteract both thermal hyperalgesia and mechanical allodynia in different models of neuropathic pain. The present study was designed to determine progesterone's modulatory role on neuropathic pain and spinal expression of ephrin-B2 following chronic constriction nerve injury (CCI). Thirty-six adult male Wistar rats were used. The sciatic nerve was chronically constricted. Progesterone (5 mg/kg and 15 mg/kg) was administrated for 10 days (from day 1 up to day10) following sciatic constriction. Behavioral tests were performed before surgery (day 0) and on days 1, 3, 7, and 14 after CCI and before progesterone administration on the same days. Western blotting was performed on days 3, 7, and 14th post-surgery. The findings showed that after CCI, the expression of spinal cord ephrin-B2 increased significantly in parallel with mechanical allodynia and thermal hyperalgesia. Post-injury administration of progesterone (15 mg/kg but not 5) decreased mechanical allodynia, thermal hyperalgesia, and the expression of spinal ephrin-B2. It is concluded that post-injury repeated administration of progesterone could be an effective way of alleviating neuropathic pain by suppressing ephrin-B2 activation and helps to make the better design of steroid-based therapies to inhibit pain after peripheral injury.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Ratos , Animais , Masculino , Progesterona/farmacologia , Progesterona/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Efrina-B2 , Ratos Wistar , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo
7.
BMC Complement Med Ther ; 22(1): 335, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550546

RESUMO

BACKGROUND: Cuscuta epithymum Murr. (C. epithymum), as an herbal medicine, has played an anti-cancerous role in various studies; however, its possible neuroprotective effects have been neglected. Here, we aimed to investigate the protective effects of C. epithymum seeds crude extract and different fractions on rat glioblastoma cells (C6) in L-glutamate oxidative condition. METHODS: Initially, the total phenolic content of C. epithymum crude extract and the fractions (all produced by maceration method) was determined. Subsequently, C6 cells were pre-treated with the various concentrations of crude extract and fractions 24 h before L-glutamate exposure. Likewise, C6 cells were treated with the same concentrations of crude extract and fractions 24 h after exposure to L-glutamate. The cell viability and morphology were compared in crude extract and fractions groups, then superoxide dismutase (SODs) activity, reactive oxygen species (ROS), and malondialdehyde (MDA) levels were measured. The flow cytometry test was used to study C. epithymum crude extract's effects on the cell cycle and also to quantify the apoptosis, necrosis, and live cells population in different groups. RESULTS: C. epithymum crude extract and fractions (hexanoic, dichloromethanolic, and methanolic) had concentration-dependent cytotoxicity (IC50:126.47, 2101.96, 140.97, and 218.96 µg/ml, respectively). The crude extract and methanolic fraction contained phenolic compounds (55.99 ± 2.795 and 50.80 ± 2.969 mg gallic acid/g extract), while in hexanoic and dichloromethanolic fractions, the phenolic content was undetectable. In the cell viability assay, in comparison to fractions, the crude extract showed a more protective effect against glutamate-induced oxidative condition (P < 0.0001). The crude extract increased the SODs activity (P < 0.001) and decreased MDA and ROS levels (P < 0.0001) in comparison to the glutamate group. The crude extract significantly increased the population of cells in G1 (from 63.04 to 76.29) and decreased the percentage of cells in G2 (from 11.56 to 6.7) and S phase (from 25.4 to 17.01). In addition, it decreased the apoptotic and necrotic cell populations (from 34 to 17.1) and also increased the percentage of live cells (from 66.8 to 83.4 percent) in the flow cytometry test. CONCLUSION: C. epithymum crude extract plays a neuroprotective role by activating the defense mechanisms in cell against the oxidative condition.


Assuntos
Cuscuta , Plantas Medicinais , Ratos , Animais , Extratos Vegetais/farmacologia , Ácido Glutâmico/toxicidade , Cuscuta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantas Medicinais/metabolismo , Fenóis/farmacologia
8.
J Mol Neurosci ; 72(11): 2273-2291, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36210429

RESUMO

Insulin signaling disruption and caspase-3 cleavage play a pathologic role in Alzheimer's disease (AD). Evidence suggested that cinnamaldehyde (Cin), the major component of cinnamon, has the ability to act as a neuroprotective agent. However, little evidence is available to demonstrate its effectiveness in regulating the insulin and caspase-3 signaling pathways and underlying molecular mechanisms. Therefore, the present study was conducted to correlate the molecular mechanisms of these signaling pathways and Cin treatment on animal behavioral performance in an intracerebroventricular (ICV)-streptozotocin (STZ, 3 mg/kg) model. The sporadic AD rat model was treated with Cin (10 and 100 mg/kg; intraperitoneal, i.p) daily for 2 weeks. Novel object recognition (NOR), Morris water maze (MWM), and elevated plus maze (EPM) tests were performed to assess recognition/spatial memory and anxiety-like behavior, respectively. Hippocampal Aß aggregation was assessed using Congo red staining. The activity of hippocampal caspase-3 and IRS-1/Akt/GSK-3ß signaling pathways were analyzed using the Western blot technique. The results revealed that Cin (100 mg/kg, effective dose) improved recognition/spatial memory deficits and anxiety-like behavior. In addition, Cin negated the effects of STZ on Aß aggregation and caspase-3 cleavage in the hippocampus. Furthermore, the Western blot method showed that hippocampal IRS-1/AKT/GSK-3ß phosphorylation was altered in ICV-STZ animal model, while Cin modulated this signaling pathway through decreasing Phospho.IRS-1Ser307/Total.IRS-1 ratio and also increasing Phospho.AktSer473/Total.Akt and Phospho.GSK-3ßSer9/Total.GSK-3ß ratios. These findings suggest that Cin is involved in the regulation of hippocampal IRS-1/AKT/GSK-3ß and caspase-3 pathways in a sporadic AD model, and modulation of these signaling pathways also influences the animal behavioral performance.


Assuntos
Doença de Alzheimer , Insulina , Ratos , Animais , Glicogênio Sintase Quinase 3 beta , Caspase 3 , Doença de Alzheimer/tratamento farmacológico , Transdução de Sinais
9.
Neurotox Res ; 40(5): 1380-1392, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36057039

RESUMO

Photobiomodulation therapy has become the focus of medical research in many areas such as Alzheimer's disease (AD), because of its modulatory effect on cellular processes through light energy absorption via photoreceptors/chromophores located in the mitochondria. However, there are still many questions around the underlying mechanisms. This study was carried out to unravel whether the function-structure of ATP-sensitive mitoBKCa channels, as crucial components for maintenance of mitochondrial homeostasis, can be altered subsequent to light therapy in AD. Induction of Aß neurotoxicity in male Wistar rats was done by intracerebroventricular injection of Aß1-42. After a week, light-treated rats were exposed to 40-Hz white light LEDs, 15 min for 7 days. Electrophysiological properties of mitoBKCa channel were investigated using a channel incorporated into the bilayer lipid membrane, and mitoBKCa-ß2 subunit expression was determined using western blot analysis in Aß-induced toxicity and light-treated rats. Our results describe that conductance and open probability (Po) of mitoBKCa channel decreased significantly and was accompanied by a Po curve rightward shift in mitochondrial preparation in Aß-induced toxicity rats. We also showed a significant reduction in expression of mitoBKCa-ß2 subunit, which is partly responsible for a leftward shift in BKCa Po curve in low calcium status. Interestingly, we provided evidence of a significant improvement in channel conductance and Po after light therapy. We also found that light therapy improved mitoBKCa-ß2 subunit expression, increasing it close to saline group. The current study explains a light therapy improvement in brain mitoBKCa channel function in the Aß-induced neurotoxicity rat model, an effect that can be linked to increased expression of ß2 subunit.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Canais KATP/metabolismo , Canais KATP/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/farmacologia , Lipídeos/farmacologia , Masculino , Mitocôndrias , Ratos , Ratos Wistar
10.
Mol Neurobiol ; 59(10): 6125-6140, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35867205

RESUMO

Mesenchymal stem cells (MSCs) and mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been regarded as the beneficial and available tools to treat various hereditary, multifactorial, acute, and chronic diseases. Mesenchymal stem cells can be extracted from numerous sources for clinical purposes while oral cavity-derived mesenchymal stem cells seem to be more effective in neuroregeneration than other sources due to their similar embryonic origins to neuronal tissues. In various studies and different neurodegenerative diseases (NDs), oral cavity mesenchymal stem cells have been applied to prove their promising capacities in disease improvement. Moreover, oral cavity mesenchymal stem cells' secretion is regarded as a novel and practical approach to neuroregeneration; hence, extracellular vesicles (EVs), especially exosomes, may provide promising results to improve CNS defects. This review article focuses on how oral cavity-derived stem cells and their extracellular vesicles can improve neurodegenerative conditions and tries to show which molecules are involved in the recovery process.


Assuntos
Exossomos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Doenças Neurodegenerativas , Humanos , Boca , Doenças Neurodegenerativas/terapia
11.
Iran J Pharm Res ; 21(1): e133668, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36896321

RESUMO

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease leading to neuronal cell death and manifested by cognitive disorders and behavioral impairment. Mesenchymal stem cells (MSCs) are one of the most promising candidates to stimulate neuroregeneration and prevent disease progression. Optimization of MSC culturing protocols is a key strategy to increase the therapeutic potential of the secretome. Objectives: Here, we investigated the effect of brain homogenate of a rat model of AD (BH-AD) on the enhancement of protein secretion in the secretome of periodontal ligament stem cells (PDLSCs) when cultured in a 3D environment. Moreover, the effect of this modified secretome was examined on neural cells to study the impact of the conditioned medium (CM) on stimulation of regeneration or immunomodulation in AD. Methods: PDLSCs were isolated and characterized. Then, the spheroids of PDLSCs were generated in a modified 3D culture plate. PDLSCs-derived CM was prepared in the presence of BH-AD (PDLSCs-HCM) and the absence of it (PDLSCs-CM). The viability of C6 glioma cells was assessed after exposure to different concentrations of both CMs. Then, a proteomic analysis was performed on the CMs. Results: Differentiation into adipocytes and high expression of MSCs markers verified the precise isolation of PDLSCs. The PDLSC spheroids were formed after 7 days of 3D culturing, and their viability was confirmed. The effect of CMs on C6 glioma cell viability showed that both CMs at low concentrations (> 20 mg/mL) had no cytotoxic effect on C6 neural cells. The results showed that PDLSCs-HCM contains higher concentrations of proteins compared to PDLSCs-CM, including Src-homology 2 domain (SH2)-containing PTPs (SHP-1) and muscle glycogen phosphorylase (PYGM) proteins. SHP-1 has a role in nerve regeneration, and PYGM is involved in glycogen metabolism. Conclusions: The modified secretome derived from 3D cultured spheroids of PDLSCs treated by BH-AD as a reservoir of regenerating neural factors can serve as a potential source for AD treatment.

12.
Behav Brain Res ; 408: 113260, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33775777

RESUMO

Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, associated with several pathophysiological complaints. Impaired insulin signaling in the brain, is one of the important characteristic features of AD which is accompanied by cognitive deficits. According to the multifactorial and complicated pathology of AD, no modifying therapy has been approved yet. Imipramine is a kind of tricyclic antidepressant with reported anti-inflammatory and anti-oxidant effects in the brain. There are controversial studies about the effect of this drug on spatial memory. This study investigates the effect of imipramine on streptozotocin (STZ) induced memory impairment in rats. Pursuing this objective, rats were treated with imipramine 10 or 20 mg/kg i.p. once a day for 14 days. 24 h after the last injection, memory function was evaluated by the Morris water maze (MWM) test in 4 consecutive days. Then, hippocampi were removed and the activity of caspase-3, mitogen activated protein kinases (MAPKs) family and inhibitory phosphorylation of insulin receptor substrate-1 (IRS-1ser307) were analyzed using Western blotting. Results showed that imipramine prevents memory impairment in STZ induced rats and this improvement was accompanied with an increase in ERK activity, reduction of caspase-3 and JNK activity, as well as partial restoration of P38 and IRS-1 activity. In conclusion, our study demonstrated that at least some members of the MAPK family are involved in the neuroprotective effect of imipramine.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Doença de Alzheimer/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Imipramina/farmacologia , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Animais , Antibióticos Antineoplásicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Ratos , Ratos Wistar , Estreptozocina/farmacologia
13.
Mol Biol Rep ; 47(3): 2097-2108, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32067159

RESUMO

The tissue-protective properties of erythropoietin (EPO) have been described in several neurodegenerative diseases models, but erythrocytosis following EPO treatment may lead to deleterious effects. Carbamylated erythropoietin, an EPO derivative lacking hematopoietic side effects, has shown protective properties in some studies. However, it is not known if CEPO protects primary hippocampal cells against Aß25-35 toxicity. The present study aimed to investigate the effect of CEPO-Fc on biochemical alterations in Akt, GSK-3ß, and ERK signaling and cell death induced by Aß25-35 in isolated hippocampal cell culture. The embryonic hippocampal cells were obtained from 18-19 day rat embryos. The cells were exposed with Aß25-35 (20 µM) in the absence or presence of CEPO-Fc (1 or 5 IU) and PI3k and ERK inhibitors. CEPO-Fc at the dose of 5 IU significantly prevented the cell loss and caspase-3 cleavage caused by Aß25-35. Additionally, CEPO-Fc noticeably reversed Aß mediated decrement of Akt and GSK-3ß phosphorylation. With exposure to LY294002, PI3 kinase inhibitor, Akt phosphorylation diminished and CEPO-Fc protective effects disappeared. Furthermore, while CEPO-Fc nullified Aß-induced increment of phospho-ERK, inhibition of ERK activity by PD98059, had no effect on Aß25-35-mediated caspase-3 cleavage and cell toxicity. These results imply that protective effects of CEPO-Fc seem to be mainly exerted through the PI3K/Akt pathway rather than ERK signaling. This study suggested that CEPO-Fc prevents Aß-induced cell toxicity as well as Akt/GSK-3ß and ERK alterations in isolated hippocampal cells. These findings might provide a new perspective on CEPO-Fc protective properties as a prospective remedial factor for neurodegenerative diseases like AD.


Assuntos
Peptídeos beta-Amiloides/efeitos adversos , Apoptose/efeitos dos fármacos , Eritropoetina/análogos & derivados , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Fragmentos Fc das Imunoglobulinas , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes de Fusão , Peptídeos beta-Amiloides/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Eritropoetina/genética , Eritropoetina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos
14.
Behav Brain Res ; 384: 112554, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32057828

RESUMO

Intracerebroventricular (icv) administration of streptozotocin (STZ) has been used as a metabolic model of sporadic Alzheimer's disease (AD). Erythropoietin (EPO) possesses neuroprotective and memory-improving effects, which might be advantageous in treating different characteristics of AD. Nevertheless, the hematopoietic effect of EPO has hindered its application as a neuroprotective agent. Previous studies have shown that a new Epo derivative called carbamylated Erythropoietin-Fc (CEPO-Fc), yield noticeable neuroprotective effects without affecting hematopoiesis. In this study, the neuroprotective effects of CEPO-Fc on icv-STZ induced memory impairment and hippocampal apoptosis were examined. Adult male Wistar rats weighing 250-300 g were used. STZ was administered on days 1 and 3 (3 mg/kg in divided doses/icv), and CEPO-Fc was administered at the dose of 5000 IU/ip/daily during days 4-14. The animals were trained in Morris water maze during days 15-17, and the memory retention test was performed on the 18th day. Following behavioral studies, the animals were sacrificed and their hippocampi isolated to determine the amounts of cleaved caspase-3 (the landmark of apoptosis). The results showed that CEPO-Fc treatment at the dose of 5000 IU/kg/ip was able to prevent the learning and memory deficit induced by icv-STZ. Western blot analysis revealed that STZ prompted the cleavage of caspase-3 in the hippocampus while pretreatment with CEPO-Fc significantly reduced the cleavage of this protein. Collectively, our findings suggest that CEPO-Fc could restore STZ-induced learning and memory impairment as well as apoptosis in the hippocampal region in a rat model of sporadic AD induced by icv-STZ.


Assuntos
Doença de Alzheimer/fisiopatologia , Antibióticos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Eritropoetina/análogos & derivados , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estreptozocina/toxicidade , Doença de Alzheimer/induzido quimicamente , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Caspase 3/metabolismo , Modelos Animais de Doenças , Eritropoetina/farmacologia , Hipocampo/metabolismo , Hipocampo/patologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Injeções Intraventriculares , Aprendizagem/efeitos dos fármacos , Teste do Labirinto Aquático de Morris , Ratos , Proteínas Recombinantes de Fusão/farmacologia
15.
Basic Clin Neurosci ; 10(1): 23-36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031891

RESUMO

INTRODUCTION: It is well documented that insulin has neuroprotective and neuromodulator effects and can protect against different models of memory loss. Furthermore, cholinergic activity plays a significant role in memory, and scopolamine-induced memory loss is widely used as an experimental model of dementia. The current study aimed at investigating the possible effects of insulin against scopolamine-induced memory impairment in Wistar rat and its underlying molecular mechanisms. METHODS: Accordingly, animals were bilaterally cannulated in CA1, hippocampus. Intrahippocampal administration of insulin 6 MU and 12 MU in CA1 per day was performed during first 6 days after surgery. During next four days, the animal's spatial learning and memory were assessed in Morris water maze test (three days of learning and one day of retention test). The animals received scopolamine (1 mg/kg) Intraperitoneally (IP) 30 minutes before the onset of behavioral tests in each day. In the last day, the hippocampi were dissected and the levels of MAPK (mitogen-activated protein kinases) and caspase-3 activation were analyzed by Western blot technique. RESULTS: The behavioral results showed that scopolamine impaired spatial learning and memory without activating casapase-3, P38, and JNK, but chronic pretreatment by both doses of insulin was unable to restore this spatial memory impairment. In addition, scopolamine significantly reduced Extracellular signal-Regulated Kinases (ERKs) activity and insulin was unable to restore this reduction. Results revealed that scopolamine-mediated memory loss was not associated with hippocampal damage. CONCLUSION: Insulin as a neuroprotective agent cannot restore memory when there is no hippocampal damage. In addition, the neuromodulator effect of insulin is not potent enough to overwhelm scopolamine-mediated disruptions of synaptic neurotransmission.

16.
Mol Biol Rep ; 46(1): 489-496, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30474774

RESUMO

ß-Amyloid peptide (Aß), the major element of senile plaques in Alzheimer's disease (AD), has been found to accumulate in brain regions critical for memory and cognition. Deposits of Aß trigger neurotoxic events which lead to neural apoptotic death. The present study examined whether agmatine, an endogenous polyamine formed by the decarboxylation of L-arginine, possesses a neuroprotective effect against Aß-induced toxicity. Primary rat hippocampal cells extracted from the brains of 18-19-day-old embryos were exposed to 10 µM of Aß (25-35) in the absence or presence of agmatine at 150 or 250 µM. Additionally, the involvement of Akt (Protein Kinae B), GSK-3ß (glycogen synthase kinase 3-ß), ERK (Extracellular Signal-Regulated Kinase) and TNF-α (Tumor necrosis factor-α) in the agmatine protection against Aß-induced neurotoxicity was investigated. Agmatine significantly prevented the effect of Aß exposure on cell viability and caspase-3 assays. Furthermore, agmatine considerably restored Aß-induced decline of phospho-Akt and phospho-GSK and blocked Aß-induced increase of phospho-ERK and TNF-alpha. Taken together, these findings might shed light on the protective effect of agmatine as a potential therapeutic agent for AD.


Assuntos
Agmatina/farmacologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Agmatina/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
17.
Metab Brain Dis ; 34(2): 659-673, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30552557

RESUMO

Consumption of high fat diet (HFD) is a health concern in modern societies, which participate in wide range of diseases. One underlying mechanism in the HFD mediated pathologies is disruption of insulin signaling activity. It is believed that HFD activates several stress signaling molecules such as MAPKs signaling pathway and these molecules participate in harmful effects in different cell populations including hippocampal cells. However, the activity of MAPKs signaling molecules are time dependent, even causing some opposing effects. Given that, MAPKs activity fluctuate with time of stress, there is less cleared how different lengths of HFD consumption can affect hippocampal MAPK. To test how duration of HFD consumption affect hippocampal MAPKs and insulin signaling activity and animal's cognitive function, rats were fed with HFD for different lengths (up to 6 months) and after each point spatial memory performances of animals was tested, then the peripheral indices of insulin resistance and hippocampal MAPKs and insulin signaling activity was evaluated. Results showed that while different time courses of HFD, up to 6 months, did not bring about significant spatial memory impairment, meanwhile the peripheral insulin sensitivity as well as hippocampal insulin and MAPKs signaling showed significant fluctuations during the different time courses of high fat diet regime. These results showed that neuronal responses to HFD is not constant and differ in a time-dependent manner, it seems that in acute phase molecular responses aimed to compensate the HFD stress but in chronic states these responses failed and devastating effects of stress began.


Assuntos
Dieta Hiperlipídica , Hipocampo/metabolismo , Memória Espacial/fisiologia , Fatores de Tempo , Animais , Cognição/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar
18.
Neuroscience ; 388: 405-417, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30102955

RESUMO

Alzheimer's disease (AD) is a debilitating neurodegenerative disease, characterized by extracellular deposition of senile plaques, mostly amyloid ß-protein (Aß) and neuronal loss. The neuroprotective effects of erythropoietin (EPO) have been reported in some models of neurodegenerative disease, but because of its hematopoietic side effects, its derivatives lacking hematopoietic bioactivity is recommended. In this study, the neuroprotective effects of carbamylated erythropoietin-Fc (CEPO-Fc) against beta amyloid-induced memory deficit were evaluated. Adult male Wistar rats weighing 250-300 g were bilaterally cannulated into CA1. Aß25-35 was administered intrahippocampally for 4 consecutive days (5 µg/2.5 µL/each side/day). CEPO-Fc (500 or 5000 IU) was injected intraperitoneally during days 4-9. Learning and memory performance of rats was assessed on days 10-13 using Morris Water Maze, then hippocampi were isolated and the amount of activated forms of hippocampal MAPKs' subfamily, Akt/GSK-3ß and MMP-2 were analyzed using Western blot. From the behavioral results, it was revealed that CEPO-Fc treatment in both 500 and 5000 IU significantly reversed Aß-induced learning and memory deterioration. From the molecular analysis, an increment of MAPKs and MMP-2 activity and an imbalance in Akt/GSK-3ß signaling after Aß25-35 administration was observed. CEPO-Fc treatment prevented the elevation of hippocampal of P38, ERK, MMP-2 activity and also Akt/GSK-3ß signaling impairment induced by Aß25-35 but it had no effect on JNK. It seems that CEPO-Fc prevents Aß-induced learning and memory deterioration, and also modulates hippocampal MAPKs, Akt/GSK-3ß and MMP-2 activity. This study suggests that CEPO-Fc can be considered as a potential therapeutic strategy for memory deficits like AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Eritropoetina/farmacologia , Hipocampo/efeitos dos fármacos , Fragmentos Fc das Imunoglobulinas/genética , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eritropoetina/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Memória/fisiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Fragmentos de Peptídeos/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais/efeitos dos fármacos
19.
Cell Mol Neurobiol ; 36(6): 829-838, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26346882

RESUMO

6-Hydroxydopamine (6-OHDA), a metabolite of dopamine is known to induce dopaminergic cell toxicity which makes that a suitable agent inducing an experimental model of Parkinson's disease (PD). Agmatine has been shown to protect against some cellular and animal PD models. This study was aimed to assess whether agmatine prevents 6-OHDA-induced SH-SY5Y cell death and if yes, then how it affects Akt/glycogen synthesis kinase-3ß (GSK-3ß) and extracellular signal-regulated kinases (ERK) signals. The cells were treated with different drugs, and their viability was examined via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay and morphological observation. Western blot studies were done to assess cleaved caspase-3, Akt/GSK-3ß, and ERK proteins. 6-OHDA-induced cell death and caspase-3 cleavage, while agmatine prevented those changes. 6-OHDA also decreased the amount of phosphorylated Akt (pAkt)/Akt while increased GSK-3ß activity which was prevented by agmatine. Additionally, this toxin increased pERK/ERK ratio which was averted again by agmatine. The PI3/Akt inhibitor, LY294002, impeded the changes induced by agmatine, while ERK inhibitor (PD98059) did not disturb the effects of agmatine, and by itself, it preserved the cells against 6-OHDA toxicity. This study revealed that agmatine is protective in 6-OHDA model of PD and affects Akt/GSK-3ß and ERK pathways.


Assuntos
Agmatina/farmacologia , Apoptose/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neuroblastoma/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxidopamina/farmacologia
20.
J Mol Neurosci ; 57(3): 325-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26266487

RESUMO

It is not known if insulin prevents Aß-induced cell death, MAPK, and Akt activity in isolated hippocampal cell culture. This study was aimed to explore the effect of insulin on Aß-induced cell death and ERK and Akt signaling alteration in isolated hippocampal cell culture. Additionally, it was desirable to assess if there is any interaction between these two pathways. The hippocampal cells were derived from fetuses at the embryonic day 18-19. The cells were treated with different drugs, and MTT assay, morphological assessments, and Western blot were done. Insulin prevented Aß-induced cell death and caspase-3 cleavage. Aß-induced toxicity was aligned with decrement of the phosphorylated Akt (pAkt) which was prevented by insulin. The PI3 kinase inhibitor, LY294002, decreased pAkt and abolished the protective effect of insulin. Aß exposure increased phosphorylated ERK (pERK) in parallel with cell death and apoptosis. Insulin-inhibited ERK activation (phosphorylation) induced by Aß and PD98059 (as ERK inhibitor) did not affect the protective effect of insulin. One of the interesting finding of this study was the interplay of Akt and ERK in Aß toxicity and insulin-mediated protection; meaning that there is an inverse relation between pERK and pAkt, in a way that PI3-Akt pathway inhibition leads to pERK increment while ERK inhibition causes Akt phosphorylation (activation). This study showed, for the first time, that insulin protects against Aß toxicity in isolated hippocampal cell culture via modulating Akt and ERK phosphorylation and also revealed an interaction between those signals in Aß toxicity and insulin-mediated protection.


Assuntos
Peptídeos beta-Amiloides/toxicidade , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Hipocampo/efeitos dos fármacos , Insulina/farmacologia , Proteínas do Tecido Nervoso/fisiologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Células Cultivadas , Cromonas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Flavonoides/farmacologia , Hipocampo/citologia , Hipocampo/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Morfolinas/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA