Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
2.
Cancer Cell ; 42(6): 915-918, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38861926

RESUMO

Experts discuss the challenges and opportunities of using artificial intelligence (AI) to study the evolution of cancer cells and their microenvironment, improve diagnosis, predict treatment response, and ensure responsible implementation in the clinic.


Assuntos
Inteligência Artificial , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/terapia , Neoplasias/genética , Neoplasias/patologia
3.
J Clin Oncol ; 42(14): 1625-1634, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38359380

RESUMO

PURPOSE: For patients with advanced cancer, early consultations with palliative care (PC) specialists reduce costs, improve quality of life, and prolong survival. However, capacity limitations prevent all patients from receiving PC shortly after diagnosis. We evaluated whether a prognostic machine learning system could promote early PC, given existing capacity. METHODS: Using population-level administrative data in Ontario, Canada, we assembled a cohort of patients with incurable cancer who received palliative-intent systemic therapy between July 1, 2014, and December 30, 2019. We developed a machine learning system that predicted death within 1 year of each treatment using demographics, cancer characteristics, treatments, symptoms, laboratory values, and history of acute care admissions. We trained the system in patients who started treatment before July 1, 2017, and evaluated the potential impact of the system on PC in subsequent patients. RESULTS: Among 560,210 treatments received by 54,628 patients, death occurred within 1 year of 45.2% of treatments. The machine learning system recommended the same number of PC consultations observed with usual care at the 60.0% 1-year risk of death, with a first-alarm positive predictive value of 69.7% and an outcome-level sensitivity of 74.9%. Compared with usual care, system-guided care could increase early PC by 8.5% overall (95% CI, 7.5 to 9.5; P < .001) and by 15.3% (95% CI, 13.9 to 16.6; P < .001) among patients who live 6 months beyond their first treatment, without requiring more PC consultations in total or substantially increasing PC among patients with a prognosis exceeding 2 years. CONCLUSION: Prognostic machine learning systems could increase early PC despite existing resource constraints. These results demonstrate an urgent need to deploy and evaluate prognostic systems in real-time clinical practice to increase access to early PC.


Assuntos
Aprendizado de Máquina , Neoplasias , Cuidados Paliativos , Encaminhamento e Consulta , Humanos , Cuidados Paliativos/métodos , Neoplasias/terapia , Masculino , Feminino , Encaminhamento e Consulta/estatística & dados numéricos , Idoso , Pessoa de Meia-Idade , Ontário , Idoso de 80 Anos ou mais , Prognóstico
4.
J Natl Compr Canc Netw ; 21(10): 1029-1037.e21, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37856226

RESUMO

BACKGROUND: Emergency department visits and hospitalizations frequently occur during systemic therapy for cancer. We developed and evaluated a longitudinal warning system for acute care use. METHODS: Using a retrospective population-based cohort of patients who started intravenous systemic therapy for nonhematologic cancers between July 1, 2014, and June 30, 2020, we randomly separated patients into cohorts for model training, hyperparameter tuning and model selection, and system testing. Predictive features included static features, such as demographics, cancer type, and treatment regimens, and dynamic features, such as patient-reported symptoms and laboratory values. The longitudinal warning system predicted the probability of acute care utilization within 30 days after each treatment session. Machine learning systems were developed in the training and tuning cohorts and evaluated in the testing cohort. Sensitivity analyses considered feature importance, other acute care endpoints, and performance within subgroups. RESULTS: The cohort included 105,129 patients who received 1,216,385 treatment sessions. Acute care followed 182,444 (15.0%) treatments within 30 days. The ensemble model achieved an area under the receiver operating characteristic curve of 0.742 (95% CI, 0.739-0.745) and was well calibrated in the test cohort. Important predictive features included prior acute care use, treatment regimen, and laboratory tests. If the system was set to alarm approximately once every 15 treatments, 25.5% of acute care events would be preceded by an alarm, and 47.4% of patients would experience acute care after an alarm. The system underestimated risk for some treatment regimens and potentially underserved populations such as females and non-English speakers. CONCLUSIONS: Machine learning warning systems can detect patients at risk for acute care utilization, which can aid in preventive intervention and facilitate tailored treatment. Future research should address potential biases and prospectively evaluate impact after system deployment.


Assuntos
Neoplasias , Feminino , Humanos , Estudos Retrospectivos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Aprendizado de Máquina , Hospitalização , Serviço Hospitalar de Emergência
5.
Nat Cardiovasc Res ; 2: 144-158, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36949957

RESUMO

Somatic mutations in blood indicative of clonal hematopoiesis of indeterminate potential (CHIP) are associated with an increased risk of hematologic malignancy, coronary artery disease, and all-cause mortality. Here we analyze the relation between CHIP status and incident peripheral artery disease (PAD) and atherosclerosis, using whole-exome sequencing and clinical data from the UK Biobank and Mass General Brigham Biobank. CHIP associated with incident PAD and atherosclerotic disease across multiple beds, with increased risk among individuals with CHIP driven by mutation in DNA Damage Repair (DDR) genes such as TP53 and PPM1D. To model the effects of DDR-induced CHIP on atherosclerosis, we used a competitive bone marrow transplantation strategy, and generated atherosclerosis-prone Ldlr-/- chimeric mice carrying 20% p53-deficient hematopoietic cells. The chimeric mice were analyzed 13-weeks post-grafting and showed increased aortic plaque size and accumulation of macrophages within the plaque, driven by increased proliferation of p53-deficient plaque macrophages. In summary, our findings highlight the role of CHIP as a broad driver of atherosclerosis across the entire arterial system beyond the coronary arteries, and provide genetic and experimental support for a direct causal contribution of TP53-mutant CHIP to atherosclerosis.

6.
Gut ; 71(9): 1909-1915, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688612

RESUMO

Artificial intelligence (AI) and machine learning (ML) systems are increasingly used in medicine to improve clinical decision-making and healthcare delivery. In gastroenterology and hepatology, studies have explored a myriad of opportunities for AI/ML applications which are already making the transition to bedside. Despite these advances, there is a risk that biases and health inequities can be introduced or exacerbated by these technologies. If unrecognised, these technologies could generate or worsen systematic racial, ethnic and sex disparities when deployed on a large scale. There are several mechanisms through which AI/ML could contribute to health inequities in gastroenterology and hepatology, including diagnosis of oesophageal cancer, management of inflammatory bowel disease (IBD), liver transplantation, colorectal cancer screening and many others. This review adapts a framework for ethical AI/ML development and application to gastroenterology and hepatology such that clinical practice is advanced while minimising bias and optimising health equity.


Assuntos
Gastroenterologia , Equidade em Saúde , Inteligência Artificial , Tomada de Decisão Clínica , Humanos , Aprendizado de Máquina
7.
Lancet Digit Health ; 4(6): e406-e414, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568690

RESUMO

BACKGROUND: Previous studies in medical imaging have shown disparate abilities of artificial intelligence (AI) to detect a person's race, yet there is no known correlation for race on medical imaging that would be obvious to human experts when interpreting the images. We aimed to conduct a comprehensive evaluation of the ability of AI to recognise a patient's racial identity from medical images. METHODS: Using private (Emory CXR, Emory Chest CT, Emory Cervical Spine, and Emory Mammogram) and public (MIMIC-CXR, CheXpert, National Lung Cancer Screening Trial, RSNA Pulmonary Embolism CT, and Digital Hand Atlas) datasets, we evaluated, first, performance quantification of deep learning models in detecting race from medical images, including the ability of these models to generalise to external environments and across multiple imaging modalities. Second, we assessed possible confounding of anatomic and phenotypic population features by assessing the ability of these hypothesised confounders to detect race in isolation using regression models, and by re-evaluating the deep learning models by testing them on datasets stratified by these hypothesised confounding variables. Last, by exploring the effect of image corruptions on model performance, we investigated the underlying mechanism by which AI models can recognise race. FINDINGS: In our study, we show that standard AI deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities, which was sustained under external validation conditions (x-ray imaging [area under the receiver operating characteristics curve (AUC) range 0·91-0·99], CT chest imaging [0·87-0·96], and mammography [0·81]). We also showed that this detection is not due to proxies or imaging-related surrogate covariates for race (eg, performance of possible confounders: body-mass index [AUC 0·55], disease distribution [0·61], and breast density [0·61]). Finally, we provide evidence to show that the ability of AI deep learning models persisted over all anatomical regions and frequency spectrums of the images, suggesting the efforts to control this behaviour when it is undesirable will be challenging and demand further study. INTERPRETATION: The results from our study emphasise that the ability of AI deep learning models to predict self-reported race is itself not the issue of importance. However, our finding that AI can accurately predict self-reported race, even from corrupted, cropped, and noised medical images, often when clinical experts cannot, creates an enormous risk for all model deployments in medical imaging. FUNDING: National Institute of Biomedical Imaging and Bioengineering, MIDRC grant of National Institutes of Health, US National Science Foundation, National Library of Medicine of the National Institutes of Health, and Taiwan Ministry of Science and Technology.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Inteligência Artificial , Detecção Precoce de Câncer , Humanos , Estudos Retrospectivos
8.
Chest ; 145(4): 745-752, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24371841

RESUMO

BACKGROUND: Observational studies have found an increased risk of adverse effects such as hemorrhage, stroke, and increased mortality in patients taking selective serotonin reuptake inhibitors (SSRIs). The impact of prior use of these medications on outcomes in critically ill patients has not been previously examined. We performed a retrospective study to determine if preadmission use of SSRIs or serotonin norepinephrine reuptake inhibitors (SNRIs) is associated with mortality differences in patients admitted to the ICU. METHODS: The retrospective study used a modifiable data mining technique applied to the publicly available Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) 2.6 database. A total of 14,709 patient records, consisting of 2,471 in the SSRI/SNRI group and 12,238 control subjects, were analyzed. The study outcome was in-hospital mortality. RESULTS: After adjustment for age, Simplified Acute Physiology Score, vasopressor use, ventilator use, and combined Elixhauser score, SSRI/SNRI use was associated with significantly increased in-hospital mortality (OR, 1.19; 95% CI, 1.02-1.40; P=.026). Among patient subgroups, risk was highest in patients with acute coronary syndrome (OR, 1.95; 95% CI, 1.21-3.13; P=.006) and patients admitted to the cardiac surgery recovery unit (OR, 1.51; 95% CI, 1.11-2.04; P=.008). Mortality appeared to vary by specific SSRI, with higher mortalities associated with higher levels of serotonin inhibition. CONCLUSIONS: We found significant increases in hospital stay mortality among those patients in the ICU taking SSRI/SNRIs prior to admission as compared with control subjects. Mortality was higher in patients receiving SSRI/SNRI agents that produce greater degrees of serotonin reuptake inhibition. The study serves to demonstrate the potential for the future application of advanced data examination techniques upon detailed (and growing) clinical databases being made available by the digitization of medicine.


Assuntos
Bases de Dados Factuais , Mortalidade Hospitalar , Unidades de Terapia Intensiva , Norepinefrina/antagonistas & inibidores , Admissão do Paciente , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Idoso , Cuidados Críticos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA