Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Technol Cancer Res Treat ; 13(5): 415-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24000987

RESUMO

Immobilization devices can impact not only the inter- and intra-fraction motion of the patient, but also the range uncertainty of the treatment beam in proton therapy. In order to limit additional range uncertainty, the water equivalent thickness (WET) of the immobilization device needs to be well known and accurately reflected in the calculations by the treatment planning system (TPS). The method presented here focusses on the use of a nozzle-mounted variable range shifter and precision-machined polystyrene blocks of known WET to evaluate commercial immobilization devices prior to clinical implementation. CT studies were also completed to evaluate the internal uniformity of the immobilization devices under study. Mul- tiple inserts of the kVue platform (Qfix Systems, Avondale, PA) were evaluated as part of this study. The results indicate that the inserts are largely interchangeable across a given design type and that the measured WET values agree with those generated by the TPS with a maxi- mum difference less than 1 mm. The WET of the devices, as determined by the TPS, was not impacted by CT beam hardening normally experienced during clinical use. The reproduc- ibility of the WET method was also determined to be better than ±0.02 mm. In conclusion, the testing of immobilization prior to implementation in proton therapy is essential in order to ascertain their impact on the proton treatment and the methodology described here can also be applied to other immobilization systems.


Assuntos
Terapia com Prótons/instrumentação , Restrição Física/instrumentação , Humanos , Neoplasias/radioterapia , Imagens de Fantasmas
2.
Med Phys ; 35(5): 1901-5, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18561665

RESUMO

The Loma Linda University proton accelerator has had several upgrades installed including synchrotron dipole power supplies and a system for monitoring the beam energy. The consistency of the energy from spill-to-spill has been tested by measuring the depth ionization at the distal edge as a function of time. These measurements were made with a minimally equipped beamline to reduce interference from confounding factors. The consistency of the energy over several months was measured in a treatment room beamline using an ionization chamber based daily quality assurance device. The results showed that the energy of protons delivered from the accelerator (in terms of water equivalent range) was consistent from spill-to-spill to better than +/-0.03 mm at 70, 155, and 250 MeV and that the energy check performed each day in the treatment room over a several month period was within +/-0.11 mm (+/-0.06 MeV) at 149 MeV. These results are within the tolerances required for the energy stacking technique.


Assuntos
Aceleradores de Partículas , Prótons , Radiometria/instrumentação , Alumínio/química , Desenho de Equipamento , Humanos , Íons , Poliestirenos , Controle de Qualidade , Radiometria/métodos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Síncrotrons , Fatores de Tempo
3.
Med Phys ; 35(1): 128-44, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18293570

RESUMO

Proton beams offer several advantages over conventional radiation techniques for treating cancer and other diseases. These advantages might be negated if the leakage and scatter radiation from the beamline and patient are too large. Although the leakage and scatter radiation for the double scattering proton beamlines at the Loma Linda University Proton Treatment Facility were measured during the acceptance testing that occurred in the early 1990s, recent discussions in the radiotherapy community have prompted a reinvestigation of this contribution to the dose equivalent a patient receives. The dose and dose equivalent delivered to a large phantom patient outside a primary proton field were determined using five methods: simulations using Monte Carlo calculations, measurements with silver halide film, measurements with ionization chambers, measurements with rem meters, and measurements with CR-39 plastic nuclear track detectors. The Monte Carlo dose distribution was calculated in a coronal plane through the simulated patient that coincided with the central axis of the beam. Measurements with the ionization chambers, rem meters, and plastic nuclear track detectors were made at multiple locations within the same coronal plane. Measurements with the film were done in a plane perpendicular to the central axis of the beam and coincident with the surface of the phantom patient. In general, agreement between the five methods was good, but there were some differences. Measurements and simulations also tended to be in agreement with the original acceptance testing measurements and results from similar facilities published in the literature. Simulations illustrated that most of the neutrons entering the patient are produced in the final patient-specific aperture and precollimator just upstream of the aperture, not in the scattering system. These new results confirm that the dose equivalents received by patients outside the primary proton field from primary particles that leak through the nozzle are below the accepted standards for x-ray and electron beams. The total dose equivalent outside of the field is similar to that received by patients undergoing treatments with intensity modulated x-ray therapy. At the center of a patient for a whole course of treatment, the dose equivalent is comparable to that delivered by a single whole-body XCT scan.


Assuntos
Difração de Nêutrons/métodos , Prótons , Dosimetria Fotográfica , Humanos , Íons , Método de Monte Carlo , Polietilenoglicóis/química , Doses de Radiação , Compostos de Prata/química , Tomografia Computadorizada por Raios X , Imagem Corporal Total
4.
Med Phys ; 34(6): 1952-66, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17654898

RESUMO

Delivery of therapeutic proton beams requires an absolute energy accuracy of +/-0.64 to 0.27 MeV for patch fields and a relative energy accuracy of +/-0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial offsets to test the envelope of algorithm accuracy demonstrated a relative accuracy of +/-0.11 MeV for small energy changes between 126 and 250 MeV. These new measurements may serve as a data set for benchmarking range-energy relationships.


Assuntos
Terapia com Prótons , Garantia da Qualidade dos Cuidados de Saúde/métodos , Radiometria/instrumentação , Radiometria/normas , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/normas , Calibragem , Desenho de Equipamento , Análise de Falha de Equipamento/métodos , Análise de Falha de Equipamento/normas , Radiometria/métodos , Dosagem Radioterapêutica , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
5.
Med Phys ; 24(9): 1499-506, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9304579

RESUMO

Protons have long been recognized as low LET radiation in radiotherapy. However, a detailed account of LET (linear energy transfer) and RBE (relative biological effectiveness) changes with incident beam energy and depth in tissue is still unresolved. This issue is particularly important for treatment planning, where the physical dose prescription is calculated from a RBE using cobalt as the reference radiation. Any significant RBE changes with energy or depth will be important to incorporate in treatment planning. In this paper we present microdosimetry spectra for the proton beam at various energies and depths and compare the results to cell survival studies performed at Loma Linda. An empirically determined biological weighting function that depends on lineal energy is used to correlate the microdosimetry spectra with cell survival data. We conclude that the variations in measured RBE with beam energy and depth are small until the distal edge of the beam is reached. On the distal edge, protons achieve stopping powers as high as 100 keV/micron, which is reflected in the lineal energy spectra taken there. Lineal energy spectra 5 cm beyond the distal edge of the Bragg peak also show a high LET component but at a dose rate 600 times smaller than observed inside the proton field.


Assuntos
Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Animais , Fenômenos Biofísicos , Biofísica , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Cricetinae , Humanos , Transferência Linear de Energia , Modelos Biológicos , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia de Alta Energia/instrumentação , Radioterapia de Alta Energia/métodos , Radioterapia de Alta Energia/estatística & dados numéricos , Eficiência Biológica Relativa , Tecnologia Radiológica/instrumentação , Tecnologia Radiológica/métodos , Tecnologia Radiológica/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA