Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Psychiatr Res ; 47(6): 740-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23472836

RESUMO

Prenatal cigarette smoke exposure (PCSE) has been associated with physiological and developmental changes that may be related to an increased risk for childhood and adult neuropsychiatric diseases. The present study investigated locomotor activity and cholinesterase enzyme activity in rats, following PCSE and/or ketamine treatment in adulthood. Pregnant female Wistar rats were exposed to 12 commercially filtered cigarettes per day for a period of 28 days. We evaluated motor activity and cholinesterase activity in the brain and serum of adult male offspring that were administered acute subanesthetic doses of ketamine (5, 15 and 25 mg/kg), which serves as an animal model of schizophrenia. To determine locomotor activity, we used the open field test. Cholinesterase activity was assessed by hydrolysis monitored spectrophotometrically. Our results show that both PCSE and ketamine treatment in the adult offspring induced increase of locomotor activity. Additionally, it was observed increase of acetylcholinesterase and butyrylcholinesterase activity in the brain and serum, respectively. We demonstrated that animals exposed to cigarettes in the prenatal period had increased the risk for psychotic symptoms in adulthood. This also occurs in a dose-dependent manner. These changes provoke molecular events that are not completely understood and may result in abnormal behavioral responses found in neuropsychiatric disorders, such as schizophrenia.


Assuntos
Colinesterases/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Esquizofrenia/fisiopatologia , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Animais , Modelos Animais de Doenças , Feminino , Ketamina/administração & dosagem , Ketamina/farmacologia , Exposição Materna/efeitos adversos , Atividade Motora/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/enzimologia , Ratos , Ratos Wistar , Esquizofrenia/induzido quimicamente , Esquizofrenia/enzimologia , Fatores de Tempo
2.
Neurochem Int ; 61(8): 1370-4, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23046746

RESUMO

Tyrosinemia is a rare genetic disease caused by mutations on genes that codify enzymes responsible for tyrosine metabolism. Considering that tyrosinemics patients usually present symptoms associated with central nervous system alterations that ranges from slight decreases in intelligence to severe mental retardation, we decided to investigate whether acute and chronic administration of L-tyrosine in rats would affect acetylcholinesterase mRNA expression and enzymatic activity during their development. In our acute protocol, Wistar rats (10 and 30 days old) were killed one hour after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old) and rats were killed 12 h after last injection. Acetylcholinesterase activity was measured by Ellman's method and acetylcholinesterase expression was carried out by a semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay. We observed that acute (10 and 30 days old rats) and chronic L-tyrosine administration increased acetylcholinesterase activity in serum and all tested brain areas (hippocampus, striatum and cerebral cortex) when compared to control group. Moreover, there was a significant decrease in mRNA levels of acetylcholinesterase in hippocampus was observed after acute protocol (10 and 30 days old rats) and in striatum after chronic protocol. In case these alterations also occur in the brain of the patients, our results may explain, at least in part, the neurological sequelae associated with high plasma concentrations of tyrosine seen in patients affected by tyrosinemia type II.


Assuntos
Acetilcolinesterase/biossíntese , Tirosina/farmacologia , Acetilcolinesterase/sangue , Acetilcolinesterase/genética , Animais , Animais Recém-Nascidos , Animais Lactentes , Química Encefálica/efeitos dos fármacos , Modelos Animais de Doenças , Esquema de Medicação , Indução Enzimática/efeitos dos fármacos , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/sangue , Proteínas Ligadas por GPI/genética , Injeções Intraperitoneais , Masculino , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/biossíntese , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tirosina/administração & dosagem , Tirosinemias/enzimologia
4.
J Psychiatr Res ; 45(11): 1497-503, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21733528

RESUMO

Epidemiological studies have indicated that prenatal exposure to environmental insults can bring an increased risk of schizophrenia. The objective of our study was to determine biochemical parameters in rats exposed to cigarette smoke (CS) in the prenatal period, evaluated in adult offspring submitted to animal model of schizophrenia induced by acute subanaesthetic doses of ketamine (5 mg/kg, 15 mg/kg and 25 mg/kg). Pregnant female Wistar rats were exposed to 12 commercially filtered cigarettes per day, daily for a period of 28 days. We evaluated the oxidative damage in lipid and protein in the rat brain, and DNA damage in the peripheral blood of male adult offspring rats. To determine oxidative damage in the lipids, we measured the formation of thiobarbituric acid reactive species (TBARS) and the oxidative damage to the proteins was assessed by the determination of carbonyl groups content. We also evaluated DNA damage using single-cell gel electrophoresis (comet assay). Our results showed that rats exposed to CS in the prenatal period presented a significant increase of the lipid peroxidation, protein oxidation and DNA damage in adult age. We can observe that the animals submitted at acute doses of ketamine also presented an increase of the lipid peroxidation and protein oxidation at different doses and structures. Finally, we suggest that exposure to CS during the prenatal period affects two essential cerebral processes during development: redox regulation and DNA integrity, evaluated in adult offspring. These effects can leads to several neurochemical changes similar to the pathophysiology of schizophrenia.


Assuntos
Dano ao DNA , DNA/metabolismo , Peroxidação de Lipídeos , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Feminino , Ketamina , Masculino , Modelos Animais , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA