Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Oncol ; 44: 101940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537326

RESUMO

Precision Medicine is being increasingly used in the developed world to improve health care. While several Precision Medicine (PM) initiatives have been launched worldwide, their implementations have proven to be more challenging particularly in low- and middle-income countries. To address this issue, the "Personalized Medicine in North Africa" initiative (PerMediNA) was launched in three North African countries namely Tunisia, Algeria and Morocco. PerMediNA is coordinated by Institut Pasteur de Tunis together with the French Ministry for Europe and Foreign Affairs, with the support of Institut Pasteur in France. The project is carried out along with Institut Pasteur d'Algérie and Institut Pasteur du Maroc in collaboration with national and international leading institutions in the field of PM including Institut Gustave Roussy in Paris. PerMediNA aims to assess the readiness level of PM implementation in North Africa, to strengthen PM infrastructure, to provide workforce training, to generate genomic data on North African populations, to implement cost effective, affordable and sustainable genetic testing for cancer patients and to inform policy makers on how to translate research knowledge into health products and services. Gender equity and involvement of young scientists in this implementation process are other key goals of the PerMediNA project. In this paper, we are describing PerMediNA as the first PM implementation initiative in North Africa. Such initiatives contribute significantly in shortening existing health disparities and inequities between developed and developing countries and accelerate access to innovative treatments for global health.

2.
J Med Microbiol ; 73(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314675

RESUMO

Introduction. Infection caused by Mycobacterium tuberculosis (M. tb) is still a leading cause of mortality worldwide with estimated 1.4 million deaths annually.Hypothesis/Gap statement. Despite macrophages' ability to kill bacterium, M. tb can grow inside these innate immune cells and the exploration of the infection has traditionally been characterized by a one-sided relationship, concentrating solely on the host or examining the pathogen in isolation.Aim. Because of only a handful of M. tb-host interactions have been experimentally characterized, our main goal is to predict protein-protein interactions during the early phases of the infection.Methodology. In this work, we performed an integrative computational approach that exploits differentially expressed genes obtained from Dual RNA-seq analysis combined with known domain-domain interactions.Results. A total of 2381 and 7214 genes were identified as differentially expressed in M. tb and in THP-1-like macrophages, respectively, revealing different transcriptional profiles in response to infection. Over 48 h of infection, the host-pathogen network revealed 25 016 PPIs. Analysis of the resulting predicted network based on cellular localization information of M. tb proteins, indicated the implication of interacting nodes including the bacterial PE/PPE/PE_PGRS family. In addition, M. tb proteins interacted with host proteins involved in NF-kB signalling pathway as well as interfering with the host apoptosis ability via the potential interaction of M. tb TB16.3 with human TAB1 and M. tb GroEL2 with host protein kinase C delta, respectively.Conclusion. The prediction of the full range of interactions between M. tb and host will contribute to better understanding of the pathogenesis of this bacterium and may provide advanced approaches to explore new therapeutic targets against tuberculosis.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Mapas de Interação de Proteínas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/genética , Macrófagos , Análise de Sequência de RNA
3.
Saudi J Biol Sci ; 29(2): 1260-1268, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35197792

RESUMO

Bacterial communities associated with roots of Panicum turgidum, exposed to arid conditions, were investigated with a combination of cultural and metataxonomic approaches. Traditional culture-based techniques were used and 32 isolates from the irradiated roots were identified as belonging to Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria phyla. Four actinobacterial strains were shown to be ionizing-radiation (IR)-resistant: Microbacterium sp. PT8 (4.8 kGy (kGy)), Micrococcus sp. PT11 (4.4 kGy), Kocuria rhizophila PT10 (2.9 kGy) and Promicromonospora panici PT9T (2.6 kGy), based on the D10 dose necessary for a 90% reduction in colony forming units (CFU). Concerning the investigation of microbial communities in situ, metataxonomic analyses of the diversity of IR-resistant microorganisms associated with irradiated roots revealed a marked dominance of Actinobacteria (46.6%) and Proteobacteria (31.5%) compared to Bacteroidetes (4.6%) and Firmicutes (3.2%). Gamma irradiation not only changed the structure of bacterial communities, but also affected their functional properties. Comparative analyses of metabolic profiles indicated the induction of several pathways related to adaptation to oxidative stress in irradiated roots, such as DNA repair, secondary metabolites synthesis, reactive oxygen species (ROS)-mitigating enzymes, etc. P. turgidum is emblematic of desert-adapted plants. Until now, there is no other work that has focused on the microbial profile of irradiated roots of this xerophyte.

4.
Biochem Biophys Res Commun ; 597: 77-82, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35124463

RESUMO

Nowadays, a large number of databases have been developed gathering different types of therapeutic peptides including antimicrobial, antiviral and scorpion toxins peptides facilitating the searching for these molecules and their structural characteristics and pharmacology. Disintegrins, a family of small non-enzymatic and cysteine-rich proteins found in the snake venom may have a potential role in terms of novel therapeutic leads for cancer treatment. Despite their therapeutic effect, no database dedicated to disintegrins is available yet. Indeed, accessible information related to disintegrins are either scattered or fragmented in different databases from which it becomes extremely difficult to collect all the properties related to a particular disintegrin without exploring numerous databases available through distinct websites. Here, we propose DisintegrinDB as a first unique resource centralizing data related to disintegrins from snake venom. DisintegrinDB aims to facilitate the search on a given disintegrin and centralizes all the information on these peptides, helping researchers to retrieve all relevant related information.

5.
Molecules ; 28(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36615520

RESUMO

Snake venom contains a number of active molecules that have been shown to possess high anti-tumor activities; disintegrins are an excellent example among these. Their ability to interact and bind with integrins suggests that they could be very valuable molecules for the development of new cancer therapeutic approaches. However, in the absence of a clear Lysine-Threonine-Serine (KTS) Disintegrins Integrin interaction model, the exact compound features behind it are still unknown. In this study, we investigated the structural characteristics of three KTS-disintegrins and the interaction mechanisms with the α1ß1 integrin receptor using in silico bioinformatics approaches. Normal mode analysis showed that the flexibility of the KTSR motif and the C-terminal region play a key role and influence the KTS-Disintegrin-integrin interaction. Protein-protein docking also suggested that the interaction involving the KTSR motif is highly dependent on the residue following K21, S23 and R24. These findings contribute to a better understanding of the KTS-Disintegrin-Integrin structural differences and their interactions with α1ß1 receptors, which could improve the selection process of the best active molecules for antitumor therapies.


Assuntos
Desintegrinas , Venenos de Serpentes , Desintegrinas/química , Sequência de Aminoácidos , Venenos de Serpentes/química , Integrinas
6.
Diagnostics (Basel) ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946812

RESUMO

Monitoring graft recipients remains dependent on traditional biomarkers and old technologies lacking specificity, sensitivity, or accuracy. Recently, metabolomics is becoming a promising approach that may offer to kidney transplants a more effective and specific monitoring. Furthermore, emerging evidence suggested a fundamental role of gut microbiota as an important determinant of patients' metabolomes. In the current study, we enrolled forty stable renal allografts recipients compared to twenty healthy individuals. Samples were taken at different time points from patient to patient following transplantation surgery, which varied from 3 months to 22 years post-graft. All patients started the immunosuppression therapy immediately following kidney graft (Day 0). Gas chromatography-mass spectrometry (GC-MS) was employed to perform untargeted analysis of fecal metabolites. Globally, the fecal metabolic signature was significantly different between kidney transplants and the control group. Fecal metabolome was dominated by lipids (sterols and fatty acids) in the stable transplant group compared to the controls (p < 0.05). Overall, 18 metabolites were significantly altered within kidney transplant recipients. Furthermore, the most notable altered metabolic pathways in kidney transplants include ubiquinone and other terpenoid-quinone biosynthesis, tyrosine metabolism, tryptophan biosynthesis, and primary bile acid biosynthesis. Fecal metabolites could effectively distinguish stable transplant recipients from controls, supporting the potential utility of metabolomics in rapid and non-invasive diagnosis to produce relevant biomarkers and to help clinicians in monitoring kidney transplants. Further investigations are needed to clarify the physiological relevance of fecal metabolome and to assess the impact of microbiota modulation.

7.
PLoS One ; 16(1): e0245362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33503040

RESUMO

Hereditary breast cancer accounts for 5-10% of all breast cancer cases. So far, known genetic risk factors account for only 50% of the breast cancer genetic component and almost a quarter of hereditary cases are carriers of pathogenic mutations in BRCA1/2 genes. Hence, the genetic basis for a significant fraction of familial cases remains unsolved. This missing heritability may be explained in part by Copy Number Variations (CNVs). We herein aimed to evaluate the contribution of CNVs to hereditary breast cancer in Tunisia. Whole exome sequencing was performed for 9 BRCA negative cases with a strong family history of breast cancer and 10 matched controls. CNVs were called using the ExomeDepth R-package and investigated by pathway analysis and web-based bioinformatic tools. Overall, 483 CNVs have been identified in breast cancer patients. Rare CNVs affecting cancer genes were detected, of special interest were those disrupting APC2, POU5F1, DOCK8, KANSL1, TMTC3 and the mismatch repair gene PMS2. In addition, common CNVs known to be associated with breast cancer risk have also been identified including CNVs on APOBECA/B, UGT2B17 and GSTT1 genes. Whereas those disrupting SULT1A1 and UGT2B15 seem to correlate with good clinical response to tamoxifen. Our study revealed new insights regarding CNVs and breast cancer risk in the Tunisian population. These findings suggest that rare and common CNVs may contribute to disease susceptibility. Those affecting mismatch repair genes are of interest and require additional attention since it may help to select candidates for immunotherapy leading to better outcomes.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Mutação em Linhagem Germinativa , Adulto , Neoplasias da Mama/epidemiologia , Variações do Número de Cópias de DNA , Feminino , Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Tunísia/epidemiologia
8.
Genomics ; 113(1 Pt 1): 317-330, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33279651

RESUMO

A new strain belonging to the genus Kocuria, designed PT10, was isolated from irradiated roots of the xerophyte Panicum turgidum. Isolate PT10 is a Gram-positive, coccoid, aerobic and ionizing-radiation (IR)-resistant actinobacterium. PT10 has shown an ability to survive under extreme conditions, such as gamma irradiation, desiccation and high concentration of hydrogen peroxide. Phenotypic, chemotaxonomic and comparative genome analyses support the assignment of strain PT10 (LMG 31102 = DSM 108617) as Kocuria rhizophila. The complete genome sequence of PT10 consists of one chromosome (2,656,287 bps), with a 70.7% G + C content and comprises 2481 protein-coding sequences. A total of 1487 proteins were identified by LC-MS/MS profiling. In silico analyses revealed that the proteome of the oxidation-tolerant PT10 possesses several features explaining its IR-resistant phenotype and many adaptive pathways implicated in response to environmental pressures - desiccation, cold, reactive oxygen species and other stressors.


Assuntos
Genes Bacterianos , Micrococcaceae/genética , Panicum/microbiologia , Tolerância a Radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dessecação , Raios gama , Micrococcaceae/patogenicidade , Micrococcaceae/efeitos da radiação , Estresse Oxidativo
9.
Extremophiles ; 25(1): 25-38, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33104875

RESUMO

A novel strain of the genus Promicromonospora, designated PT9T, was recovered from irradiated roots of the xerophyte Panicum turgidum collected from the Ksar Ghilane oasis in southern Tunisia. Strain PT9T is aerobic, non-spore-forming, Gram- positive actinomycete that produces branched hyphae and forms white to yellowish-white colonies. Chemotaxonomic features, including fatty acids, whole cell sugars and polar lipid profiles, support the assignment of PT9T to the genus Promicromonospora. The genomic relatedness indexes based on DNA-DNA hybridization and average nucleotide identity values revealed a significant genomic divergence between strain PT9T and all sequenced type strains of the taxon. Phylogenomic analysis showed that isolate PT9T was most closely related to Promicromonospora soli CGMCC 4.7398T. Phenotypic and phylogenomic analyses suggest that isolate PT9T represents a novel species of the genus Promicromonospora, for which the name Promicromonospora panici sp. nov. is proposed. The type strain is PT9T (LMG 31103T = DSM 108613T).The isolate PT9T is an ionizing-radiation-resistant actinobacterium (D10 value = 2.6 kGy), with resistance to desiccation and hydrogen peroxide. The complete genome sequence of PT9T consists of 6,582,650 bps with 71.2% G+C content and 6291 protein-coding sequences. This genome will help to decipher the microbial genetic bases for ionizing-radiation resistance mechanisms including the response to oxidative stress.


Assuntos
Actinobacteria/classificação , Panicum/microbiologia , Filogenia , Radiação Ionizante , Actinobacteria/isolamento & purificação , Actinobacteria/efeitos da radiação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Raízes de Plantas/microbiologia , RNA Ribossômico 16S , Análise de Sequência de DNA , Tunísia
10.
Biomed Res Int ; 2020: 4280467, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376724

RESUMO

Orphan diseases (ODs) are progressive genetic disorders, which affect a small number of people. The principal fundamental aspects related to these diseases include insufficient knowledge of mechanisms involved in the physiopathology necessary to access correct diagnosis and to develop appropriate healthcare. Unlike ODs, complex diseases (CDs) have been widely studied due to their high incidence and prevalence allowing to understand the underlying mechanisms controlling their physiopathology. Few studies have focused on the relationship between ODs and CDs to identify potential shared pathways and related molecular mechanisms which would allow improving disease diagnosis, prognosis, and treatment. We have performed a computational approach to studying CDs and ODs relationships through (1) connecting diseases to genes based on genes-diseases associations from public databases, (2) connecting ODs and CDs through binary associations based on common associated genes, and (3) linking ODs and CDs to common enriched pathways. Among the most shared significant pathways between ODs and CDs, we found pathways in cancer, p53 signaling, mismatch repair, mTOR signaling, B cell receptor signaling, and apoptosis pathways. Our findings represent a reliable resource that will contribute to identify the relationships between drugs and disease-pathway networks, enabling to optimise patient diagnosis and disease treatment.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Algoritmos , Animais , Apoptose , Simulação por Computador , Humanos , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Doenças Raras/genética , Transdução de Sinais
11.
Genomics ; 111(6): 1802-1814, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30529640

RESUMO

Here, we report the genomic features and the bioremediation potential of Halomonas desertis G11, a new halophilic species which uses crude oil as a carbon and energy source and displays intrinsic resistance to salt stress conditions (optimum growth at 10% NaCl). G11 genome (3.96 Mb) had a mean GC content of 57.82%, 3622 coding sequences, 480 subsystems and 64 RNA genes. Annotation predicted 38 genes involved in osmotic stress including the biosynthesis of osmoprotectants glycine-betaine, ectoine and osmoregulated periplasmic glucans. Genome analysis revealed also the versatility of the strain for emulsifying crude oil and metabolizing hydrocarbons. The ability of G11 to degrade crude oil components and to secrete a glycolipid biosurfactant with satisfying properties was experimentally confirmed and validated. Our results help to explain the exceptional capacity of G11 to survive at extreme desertic conditions, and highlight the metabolic features of this organism that has biotechnological and ecological potentialities.


Assuntos
Genes Bacterianos , Halomonas/genética , Anotação de Sequência Molecular , Petróleo/microbiologia , Tensoativos , Biodegradação Ambiental , Clima Desértico , Halomonas/metabolismo , Petróleo/metabolismo , Tunísia
12.
J Transl Med ; 16(1): 158, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29879995

RESUMO

BACKGROUND: A family history of breast cancer has long been thought to indicate the presence of inherited genetic events that predispose to this disease. In North Africa, many specific epidemio-genetic characteristics have been observed in breast cancer families when compared to Western populations. Despite these specificities, the majority of breast cancer genetics studies performed in North Africa remain restricted to the investigation of the BRCA1 and BRCA2 genes. Thus, comprehensive data at a whole exome or whole genome level from local patients are lacking. METHODS: A whole exome sequencing (WES) of seven breast cancer Tunisian families have been performed using a family-based approach. We focused our analysis on BC-TN-F001 family that included two affected members that have been sequenced using WES. Relevant variants identified in BC-TN-F001 have been confirmed using Sanger sequencing. Then, we conducted an integrative analysis by combining our results with those from other WES studies in order to figure out the genetic transmission model of the newly identified genes. Biological network construction and protein-protein interactions analyses have been performed to decipher the molecular mechanisms likely accounting for the role of these genes in breast cancer risk. RESULTS: Sequencing, filtering strategies, and validation analysis have been achieved. For BC-TN-F001, no deleterious mutations have been identified on known breast cancer genes. However, 373 heterozygous, exonic and rare variants have been identified on other candidate genes. After applying several filters, 12 relevant high-risk variants have been selected. Our results showed that these variants seem to be inherited in a family specific model. This hypothesis has been confirmed following a thorough analysis of the reported WES studies. Enriched biological process and protein-protein interaction networks resulted in the identification of four novel breast cancer candidate genes namely MMS19, DNAH3, POLK and KATB6. CONCLUSIONS: In this first WES application on Tunisian breast cancer patients, we highlighted the impact of next generation sequencing technologies in the identification of novel breast cancer candidate genes which may bring new insights into the biological mechanisms of breast carcinogenesis. Our findings showed that the breast cancer predisposition in non-BRCA families may be ethnic and/or family specific.


Assuntos
Neoplasias da Mama/genética , Sequenciamento do Exoma , Predisposição Genética para Doença , Alelos , Neoplasias da Mama/epidemiologia , Família , Feminino , Genes Neoplásicos , Estudos de Associação Genética , Variação Genética , Humanos , Masculino , Linhagem , Mapas de Interação de Proteínas , Tunísia
13.
Int J Biol Macromol ; 116: 1153-1162, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29778876

RESUMO

BLB406 is a novel isolate of Bacillus thuringiensis with a larvicidal activity against Aedes aegypti larvae. It displays original plasmidic and crystal protein patterns. The present work reported molecular and bioinformatic analyses for the genome sequence of BLB406 using MiSeq Illumina next-generation sequencing technology. The reads were assembled by Velvet tool. Using RAST program and PGAAP, the genome of BLB406 strain was shown to contain 6297 genes corresponding to 5924 protein coding sequences. The BLB406 genome investigation with BtToxin_scanner program shows that this strain has an original and different combination of toxins compared to the published ones: five cry genes (cry11, cry22, cry2, cry60, cry64) and two distinct vegetative insecticidal vip4 genes. This combination provides a potential larvicidal and anti-cancer activities to BLB406. It might be a potential solution to some problems such as the narrow insecticidal spectra and insect resistance. The whole BLB406 genome information provides a valuable background for future in silico analyses as well as biotechnological applications in order to increase the production of commercial bioinsecticide based on BLB406 B. thuringiensis strain.


Assuntos
Aedes/microbiologia , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Genoma Bacteriano , Controle Biológico de Vetores , Animais
14.
Biochem Biophys Res Commun ; 496(4): 1025-1032, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29382529

RESUMO

Scorpion envenoming and its treatment is a public health problem in many parts of the world due to highly toxic venom polypeptides diffusing rapidly within the body of severely envenomed victims. Recently, 38 AahII-specific Nanobody sequences (Nbs) were retrieved from which the performance of NbAahII10 nanobody candidate, to neutralize the most poisonous venom compound namely AahII acting on sodium channels, was established. Herein, structural computational approach is conducted to elucidate the Nb-AahII interactions that support the biological characteristics, using Nb multiple sequence alignment (MSA) followed by modeling and molecular docking investigations (RosettaAntibody, ZDOCK software tools). Sequence and structural analysis showed two dissimilar residues of NbAahII10 CDR1 (Tyr27 and Tyr29) and an inserted polar residue Ser30 that appear to play an important role. Indeed, CDR3 region of NbAahII10 is characterized by a specific Met104 and two negatively charged residues Asp115 and Asp117. Complex dockings reveal that NbAahII17 and NbAahII38 share one common binding site on the surface of the AahII toxin divergent from the NbAahII10 one's. At least, a couple of NbAahII10 - AahII residue interactions (Gln38 - Asn44 and Arg62, His64, respectively) are mainly involved in the toxic AahII binding site. Altogether, this study gives valuable insights in the design and development of next generation of antivenom.


Assuntos
Mapeamento de Epitopos/métodos , Modelos Químicos , Simulação de Acoplamento Molecular , Venenos de Escorpião/química , Escorpiões , Anticorpos de Domínio Único/química , Animais , Sítios de Ligação , Epitopos/química , Nanopartículas/química , Ligação Proteica , Análise de Sequência de Proteína/métodos , Homologia de Sequência de Aminoácidos
15.
Infect Genet Evol ; 11(4): 769-77, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21093613

RESUMO

The present study describes the in silico prediction of the regulatory network of Leishmania infected human macrophages. The construction of the gene regulatory network requires the identification of Transcription Factor Binding Sites (TFBSs) in the regulatory regions (promoters, enhancers) of genes that are regulated upon Leishmania infection. The promoters of human, mouse, rat, dog and chimpanzee genes were first identified in the whole genomes using available experimental data on full length cDNA sequences or deep CAGE tag data (DBTSS, FANTOM3, FANTOM4), mRNA models (ENSEMBL), or using hand annotated data (EPD, TRANSFAC). A phylogenetic footprinting analysis and a MATCH analysis of the promoter sequences were then performed to predict TFBS. Then, an SQL database that integrates all results of promoter analysis as well as other genome annotation information obtained from ENSEMBL, TRANSFAC, TRED (Transcription Regulatory Element Database), ORegAnno and the ENCODE project, was established. Finally publicly available expression data from human Leishmania infected macrophages were analyzed using the genome-wide information on predicted TFBS with the computer system ExPlain™. The gene regulatory network was constructed and activated signal transduction pathways were revealed. The Irak1 pathway was identified as a key pathway regulating gene expression changes in Leishmania infected macrophages.


Assuntos
Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Leishmaniose/fisiopatologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Regiões Promotoras Genéticas/genética , Animais , Sítios de Ligação/genética , Biologia Computacional , Bases de Dados Genéticas , Cães , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Leishmania/fisiologia , Redes e Vias Metabólicas/genética , Camundongos , Pan troglodytes , Ratos , Fatores de Transcrição/metabolismo
16.
BMC Genomics ; 9: 297, 2008 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-18570673

RESUMO

BACKGROUND: Ionizing-radiation-resistant bacteria (IRRB) show a surprising capacity for adaptation to ionizing radiation and desiccation. Positive Darwinian selection is expected to play an important role in this trait, but no data are currently available regarding the role of positive adaptive selection in resistance to ionizing-radiation and tolerance of desiccation. We analyzed the four known genome sequences of IRRB (Deinococcus geothermalis, Deinococcus radiodurans, Kineococcus radiotolerans, and Rubrobacter xylanophilus) to determine the role of positive Darwinian selection in the evolution of resistance to ionizing radiation and tolerance of desiccation. RESULTS: We used the programs MultiParanoid and DnaSP to deduce the sets of orthologs that potentially evolved due to positive Darwinian selection in IRRB. We find that positive selection targets 689 ortholog sets of IRRB. Among these, 58 ortholog sets are absent in ionizing-radiation-sensitive bacteria (IRSB: Escherichia coli and Thermus thermophilus). The most striking finding is that all basal DNA repair genes in IRRB, unlike many of their orthologs in IRSB, are subject to positive selection. CONCLUSION: Our results provide the first in silico prediction of positively selected genes with potential roles in the molecular basis of resistance to gamma-radiation and tolerance of desiccation in IRRB. Identification of these genes provides a basis for future experimental work aimed at understanding the metabolic networks in which they participate.


Assuntos
Bactérias/genética , Bactérias/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Actinobacteria/genética , Actinobacteria/metabolismo , Actinobacteria/efeitos da radiação , Actinomycetales/genética , Actinomycetales/metabolismo , Actinomycetales/efeitos da radiação , Bactérias/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Deinococcus/efeitos da radiação , Dessecação , Genes Bacterianos , Tolerância a Radiação/genética , Seleção Genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA