Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 20: 100125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34332121

RESUMO

Various pathologies result from disruptions to or stress of endoplasmic reticulum (ER) homeostasis, such as Parkinson's disease and most neurodegenerative illnesses, diabetes, pulmonary fibrosis, viral infections, and cancers. A critical process in maintaining ER homeostasis is the selection of misfolded proteins by the ER quality-control system for destruction via ER-associated degradation (ERAD). One key protein proposed to act during the first steps of misfolded glycoprotein degradation is the ER degradation-enhancing α-mannosidase-like protein 2 (EDEM2). Therefore, characterization of the EDEM2-associated proteome is of great interest. We took advantage of using melanoma cells overexpressing EDEM2 as a cancer model system, to start documenting at the deglycoproteome level (N-glycosites identification) the emerging link between ER homeostasis and cancer progression. The dataset created for identifying the EDEM2 glyco clients carrying high mannose/hybrid N-glycans provides a comprehensive N-glycosite analysis mapping over 1000 N-glycosites on more than 600 melanoma glycoproteins. To identify EDEM2-associated proteins, we used affinity proteomics and proteome-wide analysis of sucrose density fractionation in an integrative workflow. Using intensity and spectral count-based quantification, we identify seven new EDEM2 partners, all of which are involved in ER quality-control system and ERAD. Moreover, we defined novel endogenous candidates for EDEM2-dependent ERAD by combining deglycoproteomics, stable isotope labeling with amino acids in cell culture-based proteomics, and biochemical methods. These included tumor antigens and several ER-transiting endogenous melanoma proteins, including integrin alpha-1 and protocadherin 2, the expression of which was negatively correlated with that of EDEM2. Tumor antigens are key in the antigen presentation process, whereas integrin alpha-1 and protocadherin 2 are involved in melanoma metastasis and invasion. EDEM2 could therefore have a regulatory role in melanoma through the modulation of degradation and trafficking in these glycoproteins. The data presented herein suggest that EDEM2 is involved in ER homeostasis to a greater extent than previously suggested.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Melanoma/metabolismo , alfa-Manosidase/metabolismo , Linhagem Celular Tumoral , Glicômica , Glicoproteínas/genética , Humanos , Melanoma/genética , Proteômica , alfa-Manosidase/genética
2.
PLoS One ; 12(5): e0178393, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28562640

RESUMO

In this study we engineered yeast cells armed for heavy metal accumulation by targeting plant metallothioneins to the inner face of the yeast plasma membrane. Metallothioneins (MTs) are cysteine-rich proteins involved in the buffering of excess metal ions, especially Cu(I), Zn(II) or Cd(II). The cDNAs of seven Arabidopsis thaliana MTs (AtMT1a, AtMT1c, AtMT2a, AtMT2b, AtMT3, AtMT4a and AtMT4b) and four Noccaea caerulescens MTs (NcMT1, NcMT2a, NcMT2b and NcMT3) were each translationally fused to the C-terminus of a myristoylation green fluorescent protein variant (myrGFP) and expressed in Saccharomyces cerevisiae cells. The myrGFP cassette introduced a yeast myristoylation sequence which allowed directional targeting to the cytosolic face of the plasma membrane along with direct monitoring of the intracellular localization of the recombinant protein by fluorescence microscopy. The yeast strains expressing plant MTs were investigated against an array of heavy metals in order to identify strains which exhibit the (hyper)accumulation phenotype without developing toxicity symptoms. Among the transgenic strains which could accumulate Cu(II), Zn(II) or Cd(II), but also non-canonical metal ions, such as Co(II), Mn(II) or Ni(II), myrGFP-NcMT3 qualified as the best candidate for bioremediation applications, thanks to the robust growth accompanied by significant accumulative capacity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Metalotioneína/metabolismo , Metais Pesados/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Arabidopsis/genética , Clonagem Molecular , DNA Complementar/genética , Proteínas de Fluorescência Verde/genética , Metalotioneína/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética
3.
Electrophoresis ; 37(11): 1448-60, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26701645

RESUMO

The degradation process of the antigens specific to MHC-I presentation depends mainly on the proteasomal proteases in the cytosol. However, since many antigens are glycoproteins, including tumor antigens or viruses envelope proteins, their glycosylation status could also affect their processing and presentation. Here, we investigate the processing of tyrosinase, a multiple glycosylated tumor antigen overexpressed in human malignant melanoma. By LC-MS/MS analysis of human tyrosinase expressed in a melanoma cell, we show that all seven sites of tyrosinase are at least partially N-glycosylated. Using human CD8+ T-cell clones specific for the tyrosinase epitope YMDGTMSQV (369-377), including an N-glycosylation site, we found that transfectants of single and triple N-glycosylation mutants are recognized by specific T cells. Importantly, single, triple, and the aglycosylated tyrosinase mutants lacking the epitope located N-glycosylation site (N371D) were able to trigger higher CD8+ T-cell activation. The LC/MS analysis showed significant increase of the amount of YMDGTMSQV peptide resulted from accelerated oligomerization and degradation of aglycosylated mutants. The generation of the antigenic peptide by the antigen processing machinery is therefore largely independent of tyrosinase N-glycosylation. However, while distal N-glycans had no effect on the epitope generation, the mutants lacking the N371 glycan generated the antigenic peptide more efficiently. We conclude that epitope located N-glycans limit the ability of human tyrosinase to provide HLA-A2-restricted antigen for recognition by specific CD8+ T cells.


Assuntos
Apresentação de Antígeno/imunologia , Epitopos , Antígenos de Histocompatibilidade Classe I/imunologia , Polissacarídeos/imunologia , Linfócitos T CD8-Positivos/imunologia , Glicosilação , Antígeno HLA-A2 , Humanos , Ativação Linfocitária/genética , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/imunologia , Proteínas Mutantes
4.
PLoS One ; 7(8): e42998, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22905195

RESUMO

EDEM1 is a mannosidase-like protein that recruits misfolded glycoproteins from the calnexin/calreticulin folding cycle to downstream endoplasmic reticulum associated degradation (ERAD) pathway. Here, we investigate the role of EDEM1 in the processing of tyrosinase, a tumour antigen overexpressed in melanoma cells. First, we analyzed and modeled EDEM1 major domains. The homology model raised on the crystal structures of human and Saccharomyces cerevisiae ER class I α1,2-mannosidases reveals that the major mannosidase domain located between aminoacids 121-598 fits with high accuracy. We have further identified an N-terminal region located between aminoacids 40-119, predicted to be intrinsically disordered (ID) and susceptible to adopt multiple conformations, hence facilitating protein-protein interactions. To investigate these two domains we have constructed an EDEM1 deletion mutant lacking the ID region and a triple mutant disrupting the glycan-binding domain and analyzed their association with tyrosinase. Tyrosinase is a glycoprotein partly degraded endogenously by ERAD and the ubiquitin proteasomal system. We found that the degradation of wild type and misfolded tyrosinase was enhanced when EDEM1 was overexpressed. Glycosylated and non-glycosylated mutants co-immunoprecipitated with EDEM1 even in the absence of its intact mannosidase-like domain, but not when the ID region was deleted. In contrast, calnexin and SEL 1L associated with the deletion mutant. Our data suggest that the ID region identified in the N-terminal end of EDEM1 is involved in the binding of glycosylated and non-glycosylated misfolded proteins. Accelerating tyrosinase degradation by EDEM1 overexpression may lead to an efficient antigen presentation and enhanced elimination of melanoma cells.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Monofenol Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , Anticorpos/química , Cristalografia por Raios X/métodos , Retículo Endoplasmático/metabolismo , Glicosilação , Células HEK293 , Humanos , Melanoma/metabolismo , Dados de Sequência Molecular , Monofenol Mono-Oxigenase/genética , Mutação , Polissacarídeos/química , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA