Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Mol Biol ; 436(13): 168616, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38762033

RESUMO

N-terminal autoprocessing from its polyprotein precursor enables creating the mature-like stable dimer interface of SARS-CoV-2 main protease (MPro), concomitant with the active site oxyanion loop equilibrium transitioning to the active conformation (E*) and onset of catalytic activity. Through mutagenesis of critical interface residues and evaluating noncovalent inhibitor (ensitrelvir, ESV) facilitated dimerization through its binding to MPro, we demonstrate that residues extending from Ser1 through Glu14 are critical for dimerization. Combined mutations G11A, E290A and R298A (MPro™) restrict dimerization even upon binding of ESV to monomeric MPro™ with an inhibitor dissociation constant of 7.4 ± 1.6 µM. Contrasting the covalent inhibitor NMV or GC373 binding to monomeric MPro, ESV binding enabled capturing the transition of the oxyanion loop conformations in the absence of a reactive warhead and independent of dimerization. Characterization of complexes by room-temperature X-ray crystallography reveals ESV bound to the E* state of monomeric MPro as well as an intermediate approaching the inactive state (E). It appears that the E* to E equilibrium shift occurs initially from G138-F140 residues, leading to the unwinding of the loop and formation of the 310-helix. Finally, we describe a transient dimer structure of the MPro precursor held together through interactions of residues A5-G11 with distinct states of the active sites, E and E*, likely representing an intermediate in the autoprocessing pathway.


Assuntos
Domínio Catalítico , Proteases 3C de Coronavírus , Inibidores de Protease de Coronavírus , Indazóis , Multimerização Proteica , SARS-CoV-2 , Triazinas , Triazóis , Humanos , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Indazóis/química , Indazóis/farmacologia , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , SARS-CoV-2/enzimologia , SARS-CoV-2/metabolismo , Triazinas/química , Triazinas/farmacologia , Triazóis/química , Triazóis/farmacologia , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia
2.
Commun Biol ; 6(1): 1159, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957287

RESUMO

A critical step for SARS-CoV-2 assembly and maturation involves the autoactivation of the main protease (MProWT) from precursor polyproteins. Upon expression, a model precursor of MProWT mediates its own release at its termini rapidly to yield a mature dimer. A construct with an E290A mutation within MPro exhibits time dependent autoprocessing of the accumulated precursor at the N-terminal nsp4/nsp5 site followed by the C-terminal nsp5/nsp6 cleavage. In contrast, a precursor containing E290A and R298A mutations (MProM) displays cleavage only at the nsp4/nsp5 site to yield an intermediate monomeric product, which is cleaved at the nsp5/nsp6 site only by MProWT. MProM and the catalytic domain (MPro1-199) fused to the truncated nsp4 region also show time-dependent conversion in vitro to produce MProM and MPro1-199, respectively. The reactions follow first-order kinetics indicating that the nsp4/nsp5 cleavage occurs via an intramolecular mechanism. These results support a mechanism involving an N-terminal intramolecular cleavage leading to an increase in the dimer population and followed by an intermolecular cleavage at the C-terminus. Thus, targeting the predominantly monomeric MPro precursor for inhibition may lead to the identification of potent drugs for treatment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Mutação , Proteases 3C de Coronavírus/genética
3.
Biochemistry ; 62(21): 3036-3040, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37788367

RESUMO

Human annexin A7, a calcium- and phospholipid-binding protein, governs calcium homeostasis, plasma membrane repair, apoptosis, and tumor progression. A7 contains an N-terminal proline-rich domain (PRD; 180 residues, ∼24% prolines) that determines its functional specificity. Using microscopy and dye-binding assays, we show that recombinant A7 and its isolated PRD spontaneously phase separate into spherical condensates, which subsequently transform into ß-sheet-rich fibrils. We demonstrate that fibrillization of A7-PRD proceeds via primary nucleation and fibril-catalyzed secondary nucleation processes, as determined by chemical kinetics, providing a mechanistic basis for its amyloid assembly. This study confirms and highlights a subclass of eukaryotic PRDs prone to forming aggregates with important physiological and pathological implications.


Assuntos
Anexina A7 , Cálcio , Humanos , Anexina A7/química , Anexina A7/metabolismo , Cálcio/metabolismo , Domínios Proteicos , Amiloide/química , Prolina/química
4.
Sci Adv ; 9(28): eadg3913, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450591

RESUMO

Cytokinetic abscission, the last step of cell division, is regulated by the ESCRT machinery. In response to mitotic errors, ESCRT proteins, namely, ALIX, CHMP4B, and CHMP4C, accumulate in the cytosolic compartments termed "abscission checkpoint bodies" (ACBs) to delay abscission and prevent tumorigenesis. ALIX contributes to the biogenesis and stability of ACBs via an unknown mechanism. We show that ALIX phase separates into nondynamic condensates in vitro and in vivo, mediated by the amyloidogenic portion of its proline-rich domain. ALIX condensates confined CHMP4 paralogs in vitro. These condensates dissolved and reformed upon reversible tyrosine phosphorylation of ALIX, mediated by Src kinase and PTP1B, and sequestration of CHMP4C altered their Src-mediated dissolution. NMR analysis revealed how ALIX triggers the activation of CHMP4 proteins, which is required for successful abscission. These results implicate ALIX's phase separation in the modulation of ACBs. This study also highlights how posttranslational modifications can control protein phase separation.


Assuntos
Proteínas de Ciclo Celular , Processamento de Proteína Pós-Traducional , Fosforilação , Proteínas de Ciclo Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Tirosina/metabolismo
5.
Commun Biol ; 5(1): 976, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114420

RESUMO

The monomeric catalytic domain (residues 1-199) of SARS-CoV-2 main protease (MPro1-199) fused to 25 amino acids of its flanking nsp4 region mediates its autoprocessing at the nsp4-MPro1-199 junction. We report the catalytic activity and the dissociation constants of MPro1-199 and its analogs with the covalent inhibitors GC373 and nirmatrelvir (NMV), and the estimated monomer-dimer equilibrium constants of these complexes. Mass spectrometry indicates the presence of the accumulated adduct of NMV bound to MProWT and MPro1-199 and not of GC373. A room temperature crystal structure reveals a native-like fold of the catalytic domain with an unwound oxyanion loop (E state). In contrast, the structure of a covalent complex of the catalytic domain-GC373 or NMV shows an oxyanion loop conformation (E* state) resembling the full-length mature dimer. These results suggest that the E-E* equilibrium modulates autoprocessing of the main protease when converting from a monomeric polyprotein precursor to the mature dimer.


Assuntos
COVID-19 , Aminoácidos , Domínio Catalítico , Proteases 3C de Coronavírus , Humanos , Peptídeo Hidrolases , Poliproteínas , SARS-CoV-2/genética
6.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35140179

RESUMO

S-acylation, also known as palmitoylation, is the most abundant form of protein lipidation in humans. This reversible posttranslational modification, which targets thousands of proteins, is catalyzed by 23 members of the DHHC family of integral membrane enzymes. DHHC enzymes use fatty acyl-CoA as the ubiquitous fatty acyl donor and become autoacylated at a catalytic cysteine; this intermediate subsequently transfers the fatty acyl group to a cysteine in the target protein. Protein S-acylation intersects with almost all areas of human physiology, and several DHHC enzymes are considered as possible therapeutic targets against diseases such as cancer. These efforts would greatly benefit from a detailed understanding of the molecular basis for this crucial enzymatic reaction. Here, we combine X-ray crystallography with all-atom molecular dynamics simulations to elucidate the structure of the precatalytic complex of human DHHC20 in complex with palmitoyl CoA. The resulting structure reveals that the fatty acyl chain inserts into a hydrophobic pocket within the transmembrane spanning region of the protein, whereas the CoA headgroup is recognized by the cytosolic domain through polar and ionic interactions. Biochemical experiments corroborate the predictions from our structural model. We show, using both computational and experimental analyses, that palmitoyl CoA acts as a bivalent ligand where the interaction of the DHHC enzyme with both the fatty acyl chain and the CoA headgroup is important for catalytic chemistry to proceed. This bivalency explains how, in the presence of high concentrations of free CoA under physiological conditions, DHHC enzymes can efficiently use palmitoyl CoA as a substrate for autoacylation.


Assuntos
Acil Coenzima A/química , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Aciltransferases/genética , Domínio Catalítico , Membrana Celular/enzimologia , Regulação Enzimológica da Expressão Gênica , Humanos , Lipoilação , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos
7.
Biochemistry ; 60(33): 2519-2523, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34342986

RESUMO

Insulin-degrading enzyme (IDE) hydrolyzes monomeric polypeptides, including amyloid-ß (Aß) and HIV-1 p6. It also acts as a nonproteolytic chaperone to prevent Aß polymerization. Here we compare interactions of Aß and non-amyloidogenic p6 with IDE. Although both exhibited similar proteolysis rates, the binding kinetics to an inactive IDE characterized using relaxation-based NMR were remarkably different. IDE and Aß formed a sparsely populated complex with a lifetime of milliseconds in which a short hydrophobic cleavage segment of Aß was anchored to IDE. Strikingly, a second and more stable complex was significantly populated with a subsecond lifetime owing to multiple intermolecular contacts between Aß and IDE. By selectively sequestering Aß in this nonproductive complex, IDE likely increases the critical concentration required for fibrillization. In contrast, IDE and p6 formed a transient, submillisecond complex involving a single anchoring p6 motif. Modulation of intermolecular interactions, thus, allows IDE to differentiate between non-amyloidogenic and amyloidogenic substrates.


Assuntos
Peptídeos beta-Amiloides/química , Insulisina/química , Insulisina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Chaperonas Moleculares/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Peptídeos beta-Amiloides/metabolismo , Cinética , Modelos Químicos , Agregados Proteicos , Dobramento de Proteína , Proteólise , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
8.
Cell Host Microbe ; 29(9): 1421-1436.e7, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34384537

RESUMO

The HIV-1 virion structural polyprotein, Gag, is directed to particle assembly sites at the plasma membrane by its N-terminal matrix (MA) domain. MA also binds to host tRNAs. To understand the molecular basis of MA-tRNA interaction and its potential function, we present a co-crystal structure of HIV-1 MA-tRNALys3 complex. The structure reveals a specialized group of MA basic and aromatic residues preconfigured to recognize the distinctive structure of the tRNA elbow. Mutational, cross-linking, fluorescence, and NMR analyses show that the crystallographically defined interface drives MA-tRNA binding in solution and living cells. The structure indicates that MA is unlikely to bind tRNA and membrane simultaneously. Accordingly, single-amino-acid substitutions that abolish MA-tRNA binding caused striking redistribution of Gag to the plasma membrane and reduced HIV-1 replication. Thus, HIV-1 exploits host tRNAs to occlude a membrane localization signal and control the subcellular distribution of its major structural protein.


Assuntos
Antígenos HIV/metabolismo , Domínios Proteicos/fisiologia , RNA de Transferência/metabolismo , Montagem de Vírus/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Células HEK293 , HIV-1/genética , Células HeLa , Humanos , RNA de Transferência/genética , Proteínas de Ligação a RNA/metabolismo
9.
Proc Natl Acad Sci U S A ; 117(11): 5844-5852, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32127471

RESUMO

Human profilin I reduces aggregation and concomitant toxicity of the polyglutamine-containing N-terminal region of the huntingtin protein encoded by exon 1 (httex1) and responsible for Huntington's disease. Here, we investigate the interaction of profilin with httex1 using NMR techniques designed to quantitatively analyze the kinetics and equilibria of chemical exchange at atomic resolution, including relaxation dispersion, exchange-induced shifts, and lifetime line broadening. We first show that the presence of two polyproline tracts in httex1, absent from a shorter huntingtin variant studied previously, modulates the kinetics of the transient branched oligomerization pathway that precedes nucleation, resulting in an increase in the populations of the on-pathway helical coiled-coil dimeric and tetrameric species (τex ≤ 50 to 70 µs), while leaving the population of the off-pathway (nonproductive) dimeric species largely unaffected (τex ∼750 µs). Next, we show that the affinity of a single molecule of profilin to the polyproline tracts is in the micromolar range (Kdiss ∼ 17 and ∼ 31 µM), but binding of a second molecule of profilin is negatively cooperative, with the affinity reduced ∼11-fold. The lifetime of a 1:1 complex of httex1 with profilin, determined using a shorter huntingtin variant containing only a single polyproline tract, is shown to be on the submillisecond timescale (τex ∼ 600 µs and Kdiss ∼ 50 µM). Finally, we demonstrate that, in stable profilin-httex1 complexes, the productive oligomerization pathway, leading to the formation of helical coiled-coil httex1 tetramers, is completely abolished, and only the pathway resulting in "nonproductive" dimers remains active, thereby providing a mechanistic basis for how profilin reduces aggregation and toxicity of httex1.


Assuntos
Éxons , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Profilinas/química , Profilinas/metabolismo , Sítios de Ligação , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Peptídeos , Conformação Proteica , Domínios Proteicos
10.
J Biol Chem ; 295(4): 1105-1119, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31836666

RESUMO

Neurofibromin is a tumor suppressor encoded by the NF1 gene, which is mutated in Rasopathy disease neurofibromatosis type I. Defects in NF1 lead to aberrant signaling through the RAS-mitogen-activated protein kinase pathway due to disruption of the neurofibromin GTPase-activating function on RAS family small GTPases. Very little is known about the function of most of the neurofibromin protein; to date, biochemical and structural data exist only for its GAP domain and a region containing a Sec-PH motif. To better understand the role of this large protein, here we carried out a series of biochemical and biophysical experiments, including size-exclusion chromatography-multiangle light scattering (SEC-MALS), small-angle X-ray and neutron scattering, and analytical ultracentrifugation, indicating that full-length neurofibromin forms a high-affinity dimer. We observed that neurofibromin dimerization also occurs in human cells and likely has biological and clinical implications. Analysis of purified full-length and truncated neurofibromin variants by negative-stain EM revealed the overall architecture of the dimer and predicted the potential interactions that contribute to the dimer interface. We could reconstitute structures resembling high-affinity full-length dimers by mixing N- and C-terminal protein domains in vitro The reconstituted neurofibromin was capable of GTPase activation in vitro, and co-expression of the two domains in human cells effectively recapitulated the activity of full-length neurofibromin. Taken together, these results suggest how neurofibromin dimers might form and be stabilized within the cell.


Assuntos
Neurofibromina 1/química , Neurofibromina 1/metabolismo , Multimerização Proteica , Células HEK293 , Humanos , Neurofibromina 1/ultraestrutura , Domínios Proteicos , Relação Estrutura-Atividade , Proteínas Ativadoras de ras GTPase/metabolismo
11.
Proc Natl Acad Sci U S A ; 116(36): 17775-17785, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31431530

RESUMO

Legionella pneumophila causes a potentially fatal form of pneumonia by replicating within macrophages in the Legionella-containing vacuole (LCV). Bacterial survival and proliferation within the LCV rely on hundreds of secreted effector proteins comprising high functional redundancy. The vacuolar membrane-localized MavN, hypothesized to support iron transport, is unique among effectors because loss-of-function mutations result in severe intracellular growth defects. We show here an iron starvation response by L. pneumophila after infection of macrophages that was prematurely induced in the absence of MavN, consistent with MavN granting access to limiting cellular iron stores. MavN cysteine accessibilities to a membrane-impermeant label were determined during macrophage infections, revealing a topological pattern supporting multipass membrane transporter models. Mutations to several highly conserved residues that can take part in metal recognition and transport resulted in defective intracellular growth. Purified MavN and mutant derivatives were directly tested for transporter activity after heterologous purification and liposome reconstitution. Proteoliposomes harboring MavN exhibited robust transport of Fe2+, with the severity of defect of most mutants closely mimicking the magnitude of defects during intracellular growth. Surprisingly, MavN was equivalently proficient at transporting Fe2+, Mn2+, Co2+, or Zn2+ Consequently, flooding infected cells with either Mn2+ or Zn2+ allowed collaboration with iron to enhance intracellular growth of L. pneumophila ΔmavN strains, indicating a clear role for MavN in transporting each of these ions. These findings reveal that MavN is a transition-metal-ion transporter that plays a critical role in response to iron limitation during Legionella infection.


Assuntos
Proteínas de Bactérias , Proteínas de Transporte de Cátions , Legionella pneumophila , Metais/metabolismo , Vacúolos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Doença dos Legionários/genética , Doença dos Legionários/metabolismo , Doença dos Legionários/patologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Células U937 , Vacúolos/genética , Vacúolos/metabolismo
12.
Protein Sci ; 28(6): 1059-1070, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30942916

RESUMO

In recent years, anthrax toxin has been reengineered to act as a highly specific antiangiogenic cancer therapeutic, shown to kill tumors in animal models. This has been achieved by modifying protective antigen (PA) so that its activation and toxicity require the presence of two proteases, matrix metalloproteinase (MMP) and urokinase plasminogen activator (uPA), which are upregulated in tumor microenvironments. These therapeutics consist of intercomplementing PA variants, which are individually nontoxic, but form functional toxins upon complementary oligomerization. Here, we have created a dual-protease requiring PA targeting system which utilizes bismaleimide cross-linked PA (CLPA) rather than the intercomplementing PA variants. Three different CLPA agents were tested and, as expected, found to exclusively form octamers. Two of the CLPA agents have in vitro toxicities equal to those of previous intercomplementing agents, while the third CLPA agent had compromised in vitro cleavage and was significantly less cytotoxic. We hypothesize this difference was due to steric hindrance caused by cross-linking two PA monomers in close proximity to the PA cleavage site. Overall, this work advances the development and use of the PA and LF tumor-targeting system as a practical cancer therapeutic, as it provides a way to reduce the drug components of the anthrax toxin drug delivery system from three to two, which may lower the cost and simplify testing in clinical trials. HIGHLIGHT: Previously, anthrax toxin has been reengineered to act as a highly specific antiangiogenic cancer therapeutic. Here, we present a version, which utilizes bismaleimide cross-linked protective antigen (PA) rather than intercomplementing PA variants. This advances the development of anthrax toxin as a practical cancer therapeutic as it reduces the components of the drug delivery system to two, which may lower the cost and simplify testing in clinical trials.


Assuntos
Antígenos de Bactérias/farmacologia , Antineoplásicos/farmacologia , Toxinas Bacterianas/farmacologia , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antineoplásicos/química , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HT29 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Células RAW 264.7
13.
Nat Commun ; 10(1): 1151, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858376

RESUMO

The cell is constructed by higher-order structures and organelles through complex interactions among distinct structural constituents. The centrosome is a membraneless organelle composed of two microtubule-derived structures called centrioles and an amorphous mass of pericentriolar material. Super-resolution microscopic analyses in various organisms revealed that diverse pericentriolar material proteins are concentrically localized around a centriole in a highly organized manner. However, the molecular nature underlying these organizations remains unknown. Here we show that two human pericentriolar material scaffolds, Cep63 and Cep152, cooperatively generate a heterotetrameric α-helical bundle that functions in conjunction with its neighboring hydrophobic motifs to self-assemble into a higher-order cylindrical architecture capable of recruiting downstream components, including Plk4, a key regulator for centriole duplication. Mutations disrupting the self-assembly abrogate Plk4-mediated centriole duplication. Because pericentriolar material organization is evolutionarily conserved, this work may offer a paradigm for investigating the assembly and function of centrosomal scaffolds in various organisms.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas de Neoplasias/metabolismo , Multimerização Proteica/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Motivos de Aminoácidos/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Linhagem Celular Tumoral , Cristalografia por Raios X , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Fluorescência , Mutação , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/isolamento & purificação , Conformação Proteica em alfa-Hélice , Proteínas Serina-Treonina Quinases/isolamento & purificação , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Imagem com Lapso de Tempo
14.
Biophys J ; 116(6): 1049-1063, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30846362

RESUMO

Deregulation of KRAS4b signaling pathway has been implicated in 30% of all cancers. Membrane localization of KRAS4b is an essential step for the initiation of the downstream signaling cascades that guide various cellular mechanisms. KRAS4b plasma membrane (PM) binding is mediated by the insertion of a prenylated moiety that is attached to the terminal carboxy-methylated cysteine, in addition to electrostatic interactions of its positively charged hypervariable region with anionic lipids. Calmodulin (CaM) has been suggested to selectively bind KRAS4b to act as a negative regulator of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway by displacing KRAS4b from the membrane. However, the mechanism by which CaM can recognize and displace KRAS4b from the membrane is not well understood. In this study, we employed biophysical and structural techniques to characterize this mechanism in detail. We show that KRAS4b prenylation is required for binding to CaM and that the hydrophobic pockets of CaM can accommodate the prenylated region of KRAS4b, which might represent a novel CaM-binding motif. Remarkably, prenylated KRAS4b forms a 2:1 stoichiometric complex with CaM in a nucleotide-independent manner. The interaction between prenylated KRAS4b and CaM is enthalpically driven, and electrostatic interactions also contribute to the formation of the complex. The prenylated KRAS4b terminal KSKTKC-farnesylation and carboxy-methylation is sufficient for binding and defines the minimal CaM-binding motif. This is the same region implicated in membrane and phosphodiesterase6-δ binding. Finally, we provide a structure-based docking model by which CaM binds to prenylated KRAS4b. Our data provide new insights into the KRAS4b-CaM interaction and suggest a possible mechanism whereby CaM can regulate KRAS4b membrane localization.


Assuntos
Calmodulina/metabolismo , Prenilação de Proteína , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Calmodulina/química , Humanos , Modelos Moleculares , Nucleotídeos/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/química
15.
Proc Natl Acad Sci U S A ; 116(9): 3562-3571, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808748

RESUMO

The N-terminal region of the huntingtin protein, encoded by exon-1, comprises an amphiphilic domain (httNT), a polyglutamine (Q n ) tract, and a proline-rich sequence. Polyglutamine expansion results in an aggregation-prone protein responsible for Huntington's disease. Here, we study the earliest events involved in oligomerization of a minimalistic construct, httNTQ7, which remains largely monomeric over a sufficiently long period of time to permit detailed quantitative NMR analysis of the kinetics and structure of sparsely populated [Formula: see text] oligomeric states, yet still eventually forms fibrils. Global fitting of concentration-dependent relaxation dispersion, transverse relaxation in the rotating frame, and exchange-induced chemical shift data reveals a bifurcated assembly mechanism in which the NMR observable monomeric species either self-associates to form a productive dimer (τex ∼ 30 µs, Kdiss ∼ 0.1 M) that goes on to form a tetramer ([Formula: see text] µs; Kdiss ∼ 22 µM), or exchanges with a "nonproductive" dimer that does not oligomerize further (τex ∼ 400 µs; Kdiss ∼ 0.3 M). The excited state backbone chemical shifts are indicative of a contiguous helix (residues 3-17) in the productive dimer/tetramer, with only partial helical character in the nonproductive dimer. A structural model of the productive dimer/tetramer was obtained by simulated annealing driven by intermolecular paramagnetic relaxation enhancement data. The tetramer comprises a D2 symmetric dimer of dimers with largely hydrophobic packing between the helical subunits. The structural model, validated by EPR distance measurements, illuminates the role of the httNT domain in the earliest stages of prenucleation and oligomerization, before fibril formation.


Assuntos
Amiloide/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Amiloide/química , Amiloide/ultraestrutura , Cristalografia por Raios X , Citoesqueleto/química , Citoesqueleto/genética , Éxons/genética , Proteína Huntingtina/química , Proteína Huntingtina/ultraestrutura , Doença de Huntington/patologia , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Peptídeos/genética , Polímeros/química , Domínios Proteicos/genética , Multimerização Proteica/genética , Relação Estrutura-Atividade
16.
Nat Commun ; 8: 15560, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504272

RESUMO

Sirt1 is an NAD+-dependent protein deacetylase that regulates many physiological functions, including stress resistance, adipogenesis, cell senescence and energy production. Sirt1 can be activated by energy deprivation, but the mechanism is poorly understood. Here, we report that Sirt1 is negatively regulated by ATP, which binds to the C-terminal domain (CTD) of Sirt1. ATP suppresses Sirt1 activity by impairing the CTD's ability to bind to the deacetylase domain as well as its ability to function as the substrate recruitment site. ATP, but not NAD+, causes a conformational shift to a less compact structure. Mutations that prevent ATP binding increase Sirt1's ability to promote stress resistance and inhibit adipogenesis under high-ATP conditions. Interestingly, the CTD can be attached to other proteins, thereby converting them into energy-regulated proteins. These discoveries provide insight into how extreme energy deprivation can impact Sirt1 activity and underscore the complex nature of Sirt1 structure and regulation.


Assuntos
Trifosfato de Adenosina/química , Sirtuína 1/metabolismo , Adipogenia , Animais , Sítios de Ligação , Desoxiglucose/química , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Mutação , Plasmídeos , Domínios Proteicos , Sirtuína 1/genética , Fatores de Transcrição/metabolismo
17.
Biochemistry ; 56(7): 903-906, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28156097

RESUMO

The interaction of two folding intermediate mimetics of the model protein substrate Fyn SH3 with the chaperonin GroEL, a supramolecular foldase/unfoldase machine, has been investigated by 15N relaxation-based nuclear magnetic resonance spectroscopy (lifetime line broadening, dark state exchange saturation transfer, and relaxation dispersion). The two mimetics comprise C-terminal truncations of wild-type and triple-mutant (A39V/N53P/V55L) Fyn SH3 in which the C-terminal strand of the SH3 domain is unfolded, while preserving the remaining domain structure. Quantitative analysis of the data reveals that a mobile state of the SH3 domain confined and tethered within the cavity of GroEL, possibly through interactions with the disordered, methionine-rich C-terminal tail(s), can be detected, and that the native state of the folding intermediate mimetics is stabilized by both confinement within and binding to apo GroEL. These data provide a basis for understanding the passive activity of GroEL as a foldase/unfoldase: the unfolded state, in the absence of hydrophobic GroEL-binding consensus sequences, is destabilized within the cavity because of its larger radius of gyration compared to that of the folding intermediate, while the folding intermediate is stabilized relative to the native state because of exposure of a hydrophobic patch that favors GroEL binding.


Assuntos
Chaperonina 60/química , Dobramento de Proteína , Proteínas Proto-Oncogênicas c-fyn/química , Domínios de Homologia de src , Chaperonina 60/metabolismo , Espectroscopia de Ressonância Magnética , Mutação , Isótopos de Nitrogênio , Conformação Proteica , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo
18.
Proc Natl Acad Sci U S A ; 113(44): E6766-E6775, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791178

RESUMO

Farnesylation and carboxymethylation of KRAS4b (Kirsten rat sarcoma isoform 4b) are essential for its interaction with the plasma membrane where KRAS-mediated signaling events occur. Phosphodiesterase-δ (PDEδ) binds to KRAS4b and plays an important role in targeting it to cellular membranes. We solved structures of human farnesylated-methylated KRAS4b in complex with PDEδ in two different crystal forms. In these structures, the interaction is driven by the C-terminal amino acids together with the farnesylated and methylated C185 of KRAS4b that binds tightly in the central hydrophobic pocket present in PDEδ. In crystal form II, we see the full-length structure of farnesylated-methylated KRAS4b, including the hypervariable region. Crystal form I reveals structural details of farnesylated-methylated KRAS4b binding to PDEδ, and crystal form II suggests the potential binding mode of geranylgeranylated-methylated KRAS4b to PDEδ. We identified a 5-aa-long sequence motif (Lys-Ser-Lys-Thr-Lys) in KRAS4b that may enable PDEδ to bind both forms of prenylated KRAS4b. Structure and sequence analysis of various prenylated proteins that have been previously tested for binding to PDEδ provides a rationale for why some prenylated proteins, such as KRAS4a, RalA, RalB, and Rac1, do not bind to PDEδ. Comparison of all four available structures of PDEδ complexed with various prenylated proteins/peptides shows the presence of additional interactions due to a larger protein-protein interaction interface in KRAS4b-PDEδ complex. This interface might be exploited for designing an inhibitor with minimal off-target effects.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/química , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Prenilação de Proteína/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , 3',5'-GMP Cíclico Fosfodiesterases/genética , Sequência de Aminoácidos , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Genes ras , Humanos , Metilação , Modelos Moleculares , Conformação Molecular , Mutação , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Análise de Sequência , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo
19.
Proc Natl Acad Sci U S A ; 113(44): 12456-12461, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791180

RESUMO

Cleavage of the group-specific antigen (Gag) polyprotein by HIV-1 protease represents the critical first step in the conversion of immature noninfectious viral particles to mature infectious virions. Selective pressure exerted by HIV-1 protease inhibitors, a mainstay of current anti-HIV-1 therapies, results in the accumulation of drug resistance mutations in both protease and Gag. Surprisingly, a large number of these mutations (known as secondary or compensatory mutations) occur outside the active site of protease or the cleavage sites of Gag (located within intrinsically disordered linkers connecting the globular domains of Gag to one another), suggesting that transient encounter complexes involving the globular domains of Gag may play a role in guiding and facilitating access of the protease to the Gag cleavage sites. Here, using large fragments of Gag, as well as catalytically inactive and active variants of protease, we probe the nature of such rare encounter complexes using intermolecular paramagnetic relaxation enhancement, a highly sensitive technique for detecting sparsely populated states. We show that Gag-protease encounter complexes are primarily mediated by interactions between protease and the globular domains of Gag and that the sites of transient interactions are correlated with surface exposed regions that exhibit a high propensity to mutate in the presence of HIV-1 protease inhibitors.


Assuntos
Protease de HIV/metabolismo , HIV-1/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Domínio Catalítico , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Protease de HIV/química , Protease de HIV/genética , Inibidores da Protease de HIV/farmacologia , HIV-1/genética , Humanos , Modelos Moleculares , Mutação , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Estrutura Secundária de Proteína , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
20.
Sci Rep ; 5: 15916, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26522388

RESUMO

Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer's disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5-10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.


Assuntos
Lipídeos/fisiologia , Prenilação de Proteína/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Biofísica/métodos , Membrana Celular/metabolismo , Células Cultivadas , Guanosina Trifosfato/metabolismo , Humanos , Insetos/metabolismo , Metilação , Ligação Proteica/fisiologia , Quinases raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA