Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 183(1): 185-196.e14, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007262

RESUMO

Several HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges. We vaccinated 30 rhesus macaques with Ad26-SIV Env/Gag/Pol and SIV Env gp140 protein vaccines and assessed the induction of antibody responses and a putative protective signature. This signature included multiple antibody functions and correlated with upregulation of interferon pathways in vaccinated animals. Adoptive transfer of purified immunoglobulin G (IgG) from the vaccinated animals with the most robust protective signatures provided partial protection against SIVmac251 challenges in naive recipient rhesus macaques. These data demonstrate the protective efficacy of purified vaccine-elicited antiviral antibodies in this model, even in the absence of virus neutralization.


Assuntos
Imunização Passiva/métodos , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Produtos do Gene env/imunologia , Produtos do Gene gag/imunologia , Produtos do Gene pol/imunologia , HIV-1/imunologia , Imunoglobulina G/imunologia , Macaca mulatta/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia
2.
Cell ; 172(3): 517-533.e20, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29249358

RESUMO

B cells constitute an essential line of defense from pathogenic infections through the generation of class-switched antibody-secreting cells (ASCs) in germinal centers. Although this process is known to be regulated by follicular helper T (TfH) cells, the mechanism by which B cells initially seed germinal center reactions remains elusive. We found that NKT cells, a population of innate-like T lymphocytes, are critical for the induction of B cell immunity upon viral infection. The positioning of NKT cells at the interfollicular areas of lymph nodes facilitates both their direct priming by resident macrophages and the localized delivery of innate signals to antigen-experienced B cells. Indeed, NKT cells secrete an early wave of IL-4 and constitute up to 70% of the total IL-4-producing cells during the initial stages of infection. Importantly, the requirement of this innate immunity arm appears to be evolutionarily conserved because early NKT and IL-4 gene signatures also positively correlate with the levels of neutralizing antibodies in Zika-virus-infected macaques. In conclusion, our data support a model wherein a pre-TfH wave of IL-4 secreted by interfollicular NKT cells triggers the seeding of germinal center cells and serves as an innate link between viral infection and B cell immunity.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Imunidade Inata , Influenza Humana/imunologia , Interleucina-4/genética , Células Matadoras Naturais/imunologia , Infecção por Zika virus/imunologia , Animais , Galinhas , Cães , Centro Germinativo/citologia , Humanos , Interleucina-4/metabolismo , Macaca , Macrófagos/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL
3.
Cell ; 165(3): 656-67, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27085913

RESUMO

The earliest events following mucosal HIV-1 infection, prior to measurable viremia, remain poorly understood. Here, by detailed necropsy studies, we show that the virus can rapidly disseminate following mucosal SIV infection of rhesus monkeys and trigger components of the inflammasome, both at the site of inoculation and at early sites of distal virus spread. By 24 hr following inoculation, a proinflammatory signature that lacked antiviral restriction factors was observed in viral RNA-positive tissues. The early innate response included expression of NLRX1, which inhibits antiviral responses, and activation of the TGF-ß pathway, which negatively regulates adaptive immune responses. These data suggest a model in which the virus triggers specific host mechanisms that suppress the generation of antiviral innate and adaptive immune responses in the first few days of infection, thus facilitating its own replication. These findings have important implications for the development of vaccines and other strategies to prevent infection.


Assuntos
Inflamassomos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Animais , Medula Óssea/imunologia , Imunidade Inata , Imunidade nas Mucosas , Células Matadoras Naturais/imunologia , Macaca mulatta , Proteínas Mitocondriais/metabolismo , Monócitos/imunologia , Linfócitos T/imunologia , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo , Replicação Viral
4.
J Immunol ; 195(12): 5625-36, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26546609

RESUMO

Despite the overwhelming benefits of antiretroviral therapy (ART) in curtailing viral load in HIV-infected individuals, ART does not fully restore cellular and humoral immunity. HIV-infected individuals under ART show reduced responses to vaccination and infections and are unable to mount an effective antiviral immune response upon ART cessation. Many factors contribute to these defects, including persistent inflammation, especially in lymphoid tissues, where T follicular helper (Tfh) cells instruct and help B cells launch an effective humoral immune response. In this study we investigated the phenotype and function of circulating memory Tfh cells as a surrogate of Tfh cells in lymph nodes and found significant impairment of this cell population in chronically HIV-infected individuals, leading to reduced B cell responses. We further show that these aberrant memory Tfh cells exhibit an IL-2-responsive gene signature and are more polarized toward a Th1 phenotype. Treatment of functional memory Tfh cells with IL-2 was able to recapitulate the detrimental reprogramming. Importantly, this defect was reversible, as interfering with the IL-2 signaling pathway helped reverse the abnormal differentiation and improved Ab responses. Thus, reversible reprogramming of memory Tfh cells in HIV-infected individuals could be used to enhance Ab responses. Altered microenvironmental conditions in lymphoid tissues leading to altered Tfh cell differentiation could provide one explanation for the poor responsiveness of HIV-infected individuals to new Ags. This explanation has important implications for the development of therapeutic interventions to enhance HIV- and vaccine-mediated Ab responses in patients under ART.


Assuntos
Linfócitos B/imunologia , Infecções por HIV/imunologia , HIV , Interleucina-2/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Adulto , Anticorpos Antivirais/imunologia , Formação de Anticorpos , Linfócitos B/virologia , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Doença Crônica , Humanos , Memória Imunológica , Pessoa de Meia-Idade , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/virologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA