Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Res ; 56(5-6): 366-377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017639

RESUMO

CD36 is the key scavenger receptor driving the formation of cholesterol-loaded foam cells, the principal cellular component of atherosclerotic plaques. CD36 is down regulated by 7,8-dihydroneopterin, a potent superoxide and hypochlorite scavenging antioxidant generated by interferon-γ stimulated macrophages. 7,8-dihydroneopterin downregulates CD36 mRNA and protein levels so inhibiting macrophage foam cell formation in vitro. We examined the mechanism of 7,8-dihydroneopterin downregulation of CD36 by measuring CD36 and PPAR-γ levels by Western blot analysis, in the monocyte-like U937 cells with a range of PPAR-γ stimulants and inhibitors. Lipoxygenase activity was measured by monitoring linoleic acid oxidation at 234 nm for diene formation. Between 100 and 200 µM, 7,8-dihydroneopterin decreased CD36 levels by 50% within 12 h with levels dropping below 25% by 24 h. CD36 levels returned to basal levels after 24 h. Inhibition of protein synthesis by cycloheximide shows 7,8-dihydroneopterin had no effect on CD36 degradation rates. PPAR-γ levels were not altered by the addition of 7,8-dihydroneopterin. MAP Kinase, P38 and NF-κB pathways inhibitors SP600125, PD98059, SB202190 and BAY 11-7082, respectively, did not restore the CD36 levels in the presence of 7,8-dihydroneopterin. The addition of the lipophilic PPAR-γ activators rosiglitazone and azelaoyl-PAF prevented the CD36 downregulation by 7,8-dihydroneopterin. 7,8-dihydroneopterin inhibited soybean lipoxygenase and reduced U937 cell basal levels of cellular lipid oxides as measured by HPLC-TBARS analysis. The data show 7,8-dihydroneopterin down regulates CD36 expression by decreasing the level of lipid oxide stimulation of PPAR-γ promotor activity, potentially through lipoxygenase inhibition.


Assuntos
Antioxidantes , Lipoproteínas LDL , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Regulação para Baixo , Lipoproteínas LDL/metabolismo , Células U937 , Antígenos CD36/genética , Antígenos CD36/metabolismo , Macrófagos , PPAR gama/metabolismo , Lipoxigenases/genética , Lipoxigenases/metabolismo
2.
Metabolites ; 12(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35629944

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a complex disease associated with premature mortality. Its diagnosis is challenging, and the identification of biomarkers causally influenced by NAFLD may be clinically useful. We aimed at identifying blood metabolites causally impacted by NAFLD using two-sample Mendelian randomization (MR) with validation in a population-based biobank. Our instrument for genetically predicted NAFLD included all independent genetic variants from a recent genome-wide association study. The outcomes included 123 blood metabolites from 24,925 individuals. After correction for multiple testing, a positive effect of NAFLD on plasma tyrosine levels but not on other metabolites was identified. This association was consistent across MR methods and was robust to outliers and pleiotropy. In observational analyses performed in the Estonian Biobank (10,809 individuals including 359 patients with NAFLD), after multivariable adjustment, tyrosine levels were positively associated with the presence of NAFLD (odds ratio per 1 SD increment = 1.23 [95% confidence interval = 1.12-1.36], p = 2.19 × 10-5). In a small proof-of-concept study on bariatric surgery patients, blood tyrosine levels were higher in patients with NAFLD than without. This study revealed a potentially causal effect of NAFLD on blood tyrosine levels, suggesting it may represent a new biomarker of NAFLD.

3.
Nutrients ; 13(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34959760

RESUMO

Hepatokines are liver-derived proteins that may influence metabolic pathways such as insulin sensitivity. Recently, Sparc-related modular calcium-binding protein 1 (SMOC1) was identified as glucose-responsive hepatokine that is dysregulated in the setting of non-alcoholic fatty liver disease (NAFLD). While SMOC1 may influence glucose-insulin homeostasis in rodents, it is unknown if SMOC1 is influenced by NAFLD in humans. It is also unknown if SMOC1 is causally associated with metabolic and disease traits in humans. Therefore, we aimed to determine the effect of NAFLD on SMOC1 gene expression in the liver and aimed to explore the potential causal associations of SMOC1 levels with NAFLD, T2D, and glycemic traits in humans. Using an RNA sequencing dataset from a cohort of 216 patients with NAFLD, we assessed SMOC1 expression levels across the NAFLD spectrum. We performed a series of bidirectional inverse-variance weighted Mendelian randomization (MR) analyses on blood SMOC1 levels using two sources of genome-wide association studies (GWAS) (Fenland study, n = 10,708 and INTERVAL study, n = 3301). We utilized GWAS summary statistics for NAFLD in 8434 cases and 770,180 controls, as well as publicly available GWAS for type 2 diabetes (T2D), body mass index (BMI), waist-to-hip ratio (WHR), fasting blood insulin (FBI), fasting blood glucose (FBG), homeostatic Model Assessment of Insulin Resistance (HOMA-B and HOMA-IR), and hemoglobin A1c (HbA1C). We found that SMOC1 expression showed no significant differences across NAFLD stages. We also identified that the top single-nucleotide polymorphism associated with blood SMOC1 levels, was associated with SMOC1 gene expression in the liver, but not in other tissues. Using MR, we did not find any evidence that genetically predicted NAFLD, T2D, and glycemic traits influenced SMOC1 levels. We also did not find evidence that blood SMOC1 levels were causally associated with T2D, NAFLD, and glycemic traits. In conclusion, the hepatokine SMOC1 does not appear to be modulated by the presence of NAFLD and may not regulate glucose-insulin homeostasis in humans. Results of this study suggest that blood factors regulating metabolism in rodents may not always translate to human biology.


Assuntos
Diabetes Mellitus Tipo 2/genética , Hepatopatia Gordurosa não Alcoólica/genética , Osteonectina/sangue , Glicemia/metabolismo , Índice de Massa Corporal , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/sangue , Jejum/sangue , Expressão Gênica/fisiologia , Estudo de Associação Genômica Ampla , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/sangue , Resistência à Insulina/genética , Fígado/metabolismo , Análise da Randomização Mendeliana , Hepatopatia Gordurosa não Alcoólica/sangue , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Relação Cintura-Quadril
4.
Int J Biochem Cell Biol ; 133: 105918, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421634

RESUMO

BACKGROUND AND AIMS: Cluster of differentiation 36 (CD36) is a key scavenger receptor in the control of macrophage uptake of oxidised low-density lipoproteins (oxLDL). CD36 expression levels are not down regulated by intracellular cholesterol but are upregulated by oxidised low density lipoprotein (oxLDL) leading to the formation of lipid loaded foam cells, a major constituent of atherosclerotic plaques. We have previous shown that CD36 is down regulated by 7,8-dihydroneopterin, an antioxidant generated by γ-interferon activated macrophages. How CD36 down regulation affects oxLDL induced cytotoxicity, CD36 oxLDL upregulation and foam cell formation is examined using human monocyte like U937 cell line as a model system of human macrophages. METHODS: Low density lipoprotein (LDL) was prepared by ultracentrifugation from human plasma and oxidised in copper chloride. CD36 levels in U937 cells were measured by western blot analysis. and lipid accumulation was measured by oil red-O staining and 7-ketocholesterol accumulation by high performance liquid chromatography. Cell viability was measured by flow cytometry analysis after propidium iodide staining. RESULTS: 7,8-dihydroneopterin concentrations above 100 µM caused a concentration and time dependent decrease in cellular CD36 levels to 20 % of the untreated cells after 24 h. Upregulation of CD36 by oxLDL was inhibited by 7,8-dihydroneopterin treatment. The CD36 down regulation was associated with decrease in foam cell formation but not a reduction on oxLDL cytotoxicity. CONCLUSIONS: 7,8-dihydroneopterin down regulated CD36 in U937 cells, inhibiting foam cell formation but not oxLDL mediated cell death. 7,8-dihydroneopterin may modulate foam cell formation in atherosclerotic plaques.


Assuntos
Antioxidantes/farmacologia , Antígenos CD36/antagonistas & inibidores , Células Espumosas/efeitos dos fármacos , Lipoproteínas LDL/efeitos adversos , Macrófagos/metabolismo , Neopterina/análogos & derivados , Placa Aterosclerótica/tratamento farmacológico , Diferenciação Celular , Regulação para Baixo , Células Espumosas/metabolismo , Células Espumosas/patologia , Humanos , Neopterina/farmacologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA