Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Atherosclerosis ; : 117608, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38880706

RESUMO

BACKGROUND AND AIMS: Dysregulated cholesterol metabolism is a hallmark of atherosclerotic cardiovascular diseases, yet our understanding of how endogenous cholesterol synthesis affects atherosclerosis is not clear. The energy sensor AMP-activated protein kinase (AMPK) phosphorylates and inhibits the rate-limiting enzyme in the mevalonate pathway HMG-CoA reductase (HMGCR). Recent work demonstrated that when AMPK-HMGCR signaling was compromised in an Apoe-/- model of hypercholesterolemia, atherosclerosis was exacerbated due to elevated hematopoietic stem and progenitor cell mobilization and myelopoiesis. We sought to validate the significance of the AMPK-HMGCR signaling axis in atherosclerosis using a non-germline hypercholesterolemia model with functional ApoE. METHODS: Male and female HMGCR S871A knock-in (KI) mice and wild-type (WT) littermate controls were made atherosclerotic by intravenous injection of a gain-of-function Pcsk9D374Y-adeno-associated virus followed by high-fat and high-cholesterol atherogenic western diet feeding for 16 weeks. RESULTS: AMPK activation suppressed endogenous cholesterol synthesis in primary bone marrow-derived macrophages from WT but not HMGCR KI mice, without changing other parameters of cholesterol regulation. Atherosclerotic plaque area was unchanged between WT and HMGCR KI mice, independent of sex. Correspondingly, there were no phenotypic differences observed in hematopoietic progenitors or differentiated immune cells in the bone marrow, blood, or spleen, and no significant changes in systemic markers of inflammation. When lethally irradiated female mice were transplanted with KI bone marrow, there was similar plaque content relative to WT. CONCLUSIONS: Given previous work, our study demonstrates the importance of preclinical atherosclerosis model comparison and brings into question the importance of AMPK-mediated control of cholesterol synthesis in atherosclerosis.

2.
PLoS Pathog ; 19(9): e1011658, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37747879

RESUMO

Type 2 cytokines like IL-4 are hallmarks of helminth infection and activate macrophages to limit immunopathology and mediate helminth clearance. In addition to cytokines, nutrients and metabolites critically influence macrophage polarization. Choline is an essential nutrient known to support normal macrophage responses to lipopolysaccharide; however, its function in macrophages polarized by type 2 cytokines is unknown. Using murine IL-4-polarized macrophages, targeted lipidomics revealed significantly elevated levels of phosphatidylcholine, with select changes to other choline-containing lipid species. These changes were supported by the coordinated up-regulation of choline transport compared to naïve macrophages. Pharmacological inhibition of choline metabolism significantly suppressed several mitochondrial transcripts and dramatically inhibited select IL-4-responsive transcripts, most notably, Retnla. We further confirmed that blocking choline metabolism diminished IL-4-induced RELMα (encoded by Retnla) protein content and secretion and caused a dramatic reprogramming toward glycolytic metabolism. To better understand the physiological implications of these observations, naïve or mice infected with the intestinal helminth Heligmosomoides polygyrus were treated with the choline kinase α inhibitor, RSM-932A, to limit choline metabolism in vivo. Pharmacological inhibition of choline metabolism lowered RELMα expression across cell-types and tissues and led to the disappearance of peritoneal macrophages and B-1 lymphocytes and an influx of infiltrating monocytes. The impaired macrophage activation was associated with some loss in optimal immunity to H. polygyrus, with increased egg burden. Together, these data demonstrate that choline metabolism is required for macrophage RELMα induction, metabolic programming, and peritoneal immune homeostasis, which could have important implications in the context of other models of infection or cancer immunity.


Assuntos
Interleucina-4 , Ativação de Macrófagos , Animais , Camundongos , Colina/metabolismo , Citocinas/metabolismo , Interleucina-4/metabolismo , Macrófagos , Camundongos Endogâmicos C57BL , Regulação para Cima
3.
Eur J Immunol ; 53(2): e2149691, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36577714

RESUMO

The CD11c+ MHCII+ compartment within GM-CSF cultures consists of a MHCIIlow CD11bhigh population (GM-Macs) and a MHCIIhigh CD11bint population (GM-DCs), with different metabolic profiles. GM-Macs upregulate iNOS and produce nitric oxide (NO) upon TLR activation inhibiting mitochondrial respiration (OXPHOS) while promoting glycolytic metabolism in GM-DCs, which naturally do not express iNOS.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Óxido Nítrico , Camundongos , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Células Dendríticas/metabolismo , Diferenciação Celular , Camundongos Endogâmicos C57BL
4.
J Lipid Res ; 61(12): 1697-1706, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32978273

RESUMO

The dysregulation of myeloid-derived cell metabolism can drive atherosclerosis. AMP-activated protein kinase (AMPK) controls various aspects of macrophage dynamics and lipid homeostasis, which are important during atherogenesis. Using LysM-Cre to drive the deletion of both the α1 and α2 catalytic subunits (MacKO), we aimed to clarify the role of myeloid-specific AMPK signaling in male and female mice made acutely atherosclerotic by injection of AAV vector encoding a gain-of-function mutant PCSK9 (PCSK9-AAV) and WD feeding. After 6 weeks of WD feeding, mice received a daily injection of either the AMPK activator A-769662 or a vehicle control for an additional 6 weeks. Following this (12 weeks total), we assessed myeloid cell populations and differences between genotype or sex were not observed. Similarly, aortic sinus plaque size, lipid staining, and necrotic area did not differ in male and female MacKO mice compared with their littermate floxed controls. Moreover, therapeutic intervention with A-769662 showed no treatment effect. There were also no observable differences in the amount of circulating total cholesterol or triglyceride, and only minor differences in the levels of inflammatory cytokines between groups. Finally, CD68+ area and markers of autophagy showed no effect of either lacking AMPK signaling or AMPK activation. Our data suggest that while defined roles for each catalytic AMPK subunit have been identified, complete deletion of myeloid AMPK signaling does not significantly impact atherosclerosis. Additionally, these findings suggest that intervention with the first-generation AMPK activator A-769662 is not able to stem the progression of atherosclerosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aterosclerose/terapia , Animais , Aterosclerose/imunologia , Aterosclerose/patologia , Ativação Enzimática , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Transdução de Sinais
5.
Viruses ; 12(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963173

RESUMO

Choline is an essential nutrient required for normal neuronal and muscular development, as well as homeostatic regulation of hepatic metabolism. In the liver, choline is incorporated into the main eukaryotic phospholipid, phosphatidylcholine (PC), and can enter one-carbon metabolism via mitochondrial oxidation. Hepatitis C virus (HCV) is a hepatotropic positive-strand RNA virus that similar to other positive-strand RNA viruses and can impact phospholipid metabolism. In the current study we sought to interrogate if HCV modulates markers of choline metabolism following in vitro infection, while subsequently assessing if the inhibition of choline uptake and metabolism upon concurrent HCV infection alters viral replication and infectivity. Additionally, we assessed whether these parameters were consistent between cells cultured in fetal bovine serum (FBS) or human serum (HS), conditions known to differentially affect in vitro HCV infection. We observed that choline transport in FBS- and HS-cultured Huh7.5 cells is facilitated by the intermediate affinity transporter, choline transporter-like family (CTL). HCV infection in FBS, but not HS-cultured cells diminished CTL1 transcript and protein expression at 24 h post-infection, which was associated with lower choline uptake and lower incorporation of choline into PC. No changes in other transporters were observed and at 96 h post-infection, all differences were normalized. Reciprocally, limiting the availability of choline for PC synthesis by use of a choline uptake inhibitor resulted in increased HCV replication at this early stage (24 h post-infection) in both FBS- and HS-cultured cells. Finally, in chronic infection (96 h post-infection), inhibiting choline uptake and metabolism significantly impaired the production of infectious virions. These results suggest that in addition to a known role of choline kinase, the transport of choline, potentially via CTL1, might also represent an important and regulated process during HCV infection.


Assuntos
Carcinoma Hepatocelular/metabolismo , Colina/metabolismo , Hepacivirus/fisiologia , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Antígenos CD/metabolismo , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Meios de Cultura/química , Humanos , Neoplasias Hepáticas/virologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Soroalbumina Bovina/farmacologia , Replicação Viral
6.
Molecules ; 24(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635211

RESUMO

Activation of the transcription factor liver X receptor (LXR) has beneficial effects on macrophage lipid metabolism and inflammation, making it a potential candidate for therapeutic targeting in cardiometabolic disease. While small molecule delivery via nanomedicine has promising applications for a number of chronic diseases, questions remain as to how nanoparticle formulation might be tailored to suit different tissue microenvironments and aid in drug delivery. In the current study, we aimed to compare the in vitro drug delivering capability of three nanoparticle (NP) formulations encapsulating the LXR activator, GW-3965. We observed little difference in the base characteristics of standard PLGA-PEG NP when compared to two redox-active polymeric NP formulations, which we called redox-responsive (RR)1 and RR2. Moreover, we also observed similar uptake of these NP into primary mouse macrophages. We used the transcript and protein expression of the cholesterol efflux protein and LXR target ATP-binding cassette A1 (ABCA1) as a readout of GW-3956-induced LXR activation. Following an initial acute uptake period that was meant to mimic circulating exposure in vivo, we determined that although the induction of transcript expression was similar between NPs, treatment with the redox-sensitive RR1 NPs resulted in a higher level of ABCA1 protein. Our results suggest that NP formulations responsive to cellular cues may be an effective tool for targeted and disease-specific drug release.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Benzoatos/farmacologia , Benzilaminas/farmacologia , Macrófagos/citologia , Animais , Benzoatos/química , Benzilaminas/química , Células Cultivadas , Composição de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores X do Fígado/agonistas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Nanopartículas , Poliésteres/química , Polietilenoglicóis/química , Cultura Primária de Células
7.
J Biol Chem ; 293(29): 11600-11611, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29880645

RESUMO

Choline is an essential nutrient that is required for synthesis of the main eukaryote phospholipid, phosphatidylcholine. Macrophages are innate immune cells that survey and respond to danger and damage signals. Although it is well-known that energy metabolism can dictate macrophage function, little is known as to the importance of choline homeostasis in macrophage biology. We hypothesized that the uptake and metabolism of choline are important for macrophage inflammation. Polarization of primary bone marrow macrophages with lipopolysaccharide (LPS) resulted in an increased rate of choline uptake and higher levels of PC synthesis. This was attributed to a substantial increase in the transcript and protein expression of the choline transporter-like protein-1 (CTL1) in polarized cells. We next sought to determine the importance of choline uptake and CTL1 for macrophage immune responsiveness. Chronic pharmacological or CTL1 antibody-mediated inhibition of choline uptake resulted in altered cytokine secretion in response to LPS, which was associated with increased levels of diacylglycerol and activation of protein kinase C. These experiments establish a previously unappreciated link between choline phospholipid metabolism and macrophage immune responsiveness, highlighting a critical and regulatory role for macrophage choline uptake via the CTL1 transporter.


Assuntos
Colina/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Fosfolipídeos/metabolismo , Animais , Células Cultivadas , Inflamação/patologia , Lipogênese , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Proteínas de Transporte de Cátions Orgânicos/metabolismo
8.
Front Immunol ; 9: 495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29675017

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, is able to efficiently manipulate the host immune system establishing chronic infection, yet the underlying mechanisms of immune evasion are not fully understood. Evidence suggests that this pathogen interferes with host cell lipid metabolism to ensure its persistence. Fatty acid metabolism is regulated by acetyl-CoA carboxylase (ACC) 1 and 2; both isoforms catalyze the conversion of acetyl-CoA into malonyl-CoA, but have distinct roles. ACC1 is located in the cytosol, where it regulates de novo fatty acid synthesis (FAS), while ACC2 is associated with the outer mitochondrial membrane, regulating fatty acid oxidation (FAO). In macrophages, mycobacteria induce metabolic changes that lead to the cytosolic accumulation of lipids. This reprogramming impairs macrophage activation and contributes to chronic infection. In dendritic cells (DCs), FAS has been suggested to underlie optimal cytokine production and antigen presentation, but little is known about the metabolic changes occurring in DCs upon mycobacterial infection and how they affect the outcome of the immune response. We therefore determined the role of fatty acid metabolism in myeloid cells and T cells during Mycobacterium bovis BCG or Mtb infection, using novel genetic mouse models that allow cell-specific deletion of ACC1 and ACC2 in DCs, macrophages, or T cells. Our results demonstrate that de novo FAS is induced in DCs and macrophages upon M. bovis BCG infection. However, ACC1 expression in DCs and macrophages is not required to control mycobacteria. Similarly, absence of ACC2 did not influence the ability of DCs and macrophages to cope with infection. Furthermore, deletion of ACC1 in DCs or macrophages had no effect on systemic pro-inflammatory cytokine production or T cell priming, suggesting that FAS is dispensable for an intact innate response against mycobacteria. In contrast, mice with a deletion of ACC1 specifically in T cells fail to generate efficient T helper 1 responses and succumb early to Mtb infection. In summary, our results reveal ACC1-dependent FAS as a crucial mechanism in T cells, but not DCs or macrophages, to fight against mycobacterial infection.


Assuntos
Células Dendríticas/imunologia , Ácidos Graxos/imunologia , Imunidade Inata , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Células Th1/imunologia , Tuberculose/imunologia , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/imunologia , Animais , Células Dendríticas/microbiologia , Células Dendríticas/patologia , Ácidos Graxos/genética , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/genética , Células Th1/microbiologia , Células Th1/patologia , Tuberculose/genética , Tuberculose/patologia
9.
Eur Respir J ; 46(4): 1033-45, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26022954

RESUMO

The hypoxic environment of cystic fibrosis airways allows the persistence of facultative anaerobic bacteria, which can produce short-chain fatty acids (SCFAs) through fermentation. However, the relevance of SCFAs in cystic fibrosis lung disease is unknown. We show that SCFAs are present in sputum samples from cystic fibrosis patients in millimolar concentrations (mean±sem 1.99±0.36 mM).SCFAs positively correlated with sputum neutrophil count and higher SCFAs were predictive for impaired nitric oxide production. We studied the effects of the SCFAs acetate, propionate and butyrate on airway inflammatory responses using epithelial cell lines and primary cell cultures. SCFAs in concentrations present in cystic fibrosis airways (0.5-2.5 mM) affected the release of granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor and interleukin (IL)-6. SCFAs also resulted in higher IL-8 release from stimulated cystic fibrosis transmembrane conductance regulator (CFTR) F508del-mutant compared to wild-type CFTR-corrected bronchial epithelial cells. At 25 mM propionate reduced IL-8 release in control but not primary cystic fibrosis epithelial cells. Low (0.5-2.5 mM) SCFA concentrations increased, while high (25-50 mM) concentrations decreased inducible nitric oxide synthase expression. In addition, SCFAs affected the growth of Pseudomonas aeruginosa in a concentration- and pH-dependent manner.Thus, our data suggest that SCFAs contribute to cystic fibrosis-specific alterations of responses to airway infection and inflammation.


Assuntos
Fibrose Cística/tratamento farmacológico , Fibrose Cística/imunologia , Ácidos Graxos Voláteis/química , Escarro/química , Acetatos/química , Adolescente , Infecções Bacterianas/complicações , Infecções Bacterianas/tratamento farmacológico , Butiratos/química , Criança , Cromatografia Gasosa , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Fermentação , Volume Expiratório Forçado , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hipóxia , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Óxido Nítrico/química , Óxido Nítrico Sintase Tipo II/metabolismo , Propionatos/química , Pseudomonas aeruginosa/crescimento & desenvolvimento
10.
Blood ; 124(20): 3081-91, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25100743

RESUMO

Multiple subsets of FMS-like tyrosine kinase 3 ligand (FLT3L)-dependent dendritic cells (DCs) control T-cell tolerance and immunity. In mice, Batf3-dependent CD103(+) DCs efficiently enter lymph nodes and cross-present antigens, rendering this conserved DC subset a promising target for tolerance induction or vaccination. However, only limited numbers of CD103(+) DCs can be isolated with current methods. Established bone marrow culture protocols efficiently generate monocyte-derived DCs or produce a mixture of FLT3L-dependent DC subsets. We show that CD103(+) DC development requires prolonged culture time and continuous action of both FLT3L and granulocyte macrophage colony-stimulating factor (GM-CSF), explained by a dual effect of GM-CSF on DC precursors and differentiating CD103(+) DCs. Accordingly, we established a novel method to generate large numbers of CD103(+) DCs (iCD103-DCs) with limited presence of other DC subsets. iCD103-DCs develop in a Batf3- and Irf8-dependent fashion, express a CD8α/CD103 DC gene signature, cross-present cell-associated antigens, and respond to TLR3 stimulation. Thus, iCD103-DCs reflect key features of tissue CD103(+) DCs. Importantly, iCD103-DCs express high levels of CCR7 upon maturation and migrate to lymph nodes more efficiently than classical monocyte-derived DCs. Finally, iCD103-DCs induce T cell-mediated protective immunity in vivo. Our study provides insights into CD103(+) DC development and function.


Assuntos
Antígenos CD/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Células Dendríticas/citologia , Células Dendríticas/imunologia , Cadeias alfa de Integrinas/imunologia , Proteínas Repressoras/imunologia , Animais , Antígenos CD/análise , Fatores de Transcrição de Zíper de Leucina Básica/análise , Diferenciação Celular , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Imunidade Celular , Cadeias alfa de Integrinas/análise , Proteínas de Membrana/imunologia , Camundongos , Proteínas Repressoras/análise , Linfócitos T/imunologia , Receptor 3 Toll-Like/imunologia
11.
Eur J Immunol ; 44(10): 2990-3002, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25042334

RESUMO

Foxp3 specifies the Treg cell lineage and is indispensable for immune tolerance. Accordingly, rare Foxp3 mutations cause lethal autoimmunity. The mechanisms precipitating more prevalent human autoimmune diseases are poorly understood, but involve a combination of genetic and environmental factors. Many autoimmune diseases associate with a partial Treg-cell dysfunction, yet mouse models reflecting such complex pathophysiological processes are rare. Around 95% of Foxp3(+) Treg cells can be specifically depleted in bacterial artifical chromosome (BAC)-transgenic Depletion of REGulatory T cells (DEREG) mice through diphtheria toxin (DT) treatment. However, Treg-cell depletion fails to cause autoimmunity in adult DEREG mice for unclear reasons. By crossing Foxp3(GFP) knock-in mice to DEREG mice, we introduced additional genetic susceptibility that does not affect untreated mice. Strikingly, DT treatment of DEREG × Foxp3(GFP) mice rapidly causes autoimmunity characterized by blepharitis, tissue damage, and autoantibody production. This inflammatory disease is associated with augmented T-cell activation, increased Th2 cytokine production and myeloproliferation, and is caused by defective Treg-cell homeostasis, preventing few DT-insensitive Treg cells from repopulating the niche after Treg-cell depletion. Our study provides important insights into self-tolerance. We further highlight DEREG × Foxp3(GFP) mice as a model to investigate the role of environmental factors in precipitating autoimmunity. This may help to better understand and treat human autoimmunity.


Assuntos
Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Fatores de Transcrição Forkhead/imunologia , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos
12.
PLoS One ; 7(10): e45874, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056223

RESUMO

OBJECTIVE: Obesity is a risk factor for the development of insulin resistance and is one of the most important contributors to the pathogenesis of type 2 diabetes, which acts mainly through the secretion of adipokines such as TNF-α that may influence insulin sensitivity. TNF-α affects many aspects of adipocyte function, such as adipocyte development and lipid metabolism. MATERIAL AND METHODS: We demonstrated that there is a correlation between the expressions of TNF-α in retroperitoneal WAT and insulin-resistance in 8 genetically obese fa/fa rats. Treatment of animals with CL 316,243, a ß3-adrenergic agonist, showed an improvement of insulin-resistance that was linked with the suppression of TNF-α mRNA expression in WAT. RESULTS: These results confirm the association between TNF-α expression and the insulin-resistant condition in rats. Our finding indicates that the hyperglycaemia and hyperinsulinemia induced by insulin-resistance correlated positively with the expression of TNF-α mRNA in an abdominal WAT depot. CONCLUSION: We conclude that CL 316,243 possesses both anti-diabetic effects and anti-obesity effects in rodents.


Assuntos
Dioxóis/farmacologia , Regulação para Baixo/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Fator de Necrose Tumoral alfa/genética , Gordura Abdominal/efeitos dos fármacos , Gordura Abdominal/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Glicemia/metabolismo , Northern Blotting , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Ácidos Graxos/sangue , Expressão Gênica/efeitos dos fármacos , Insulina/sangue , Resistência à Insulina/genética , Masculino , Obesidade/sangue , Obesidade/genética , Obesidade/prevenção & controle , Ratos , Ratos Zucker , Receptores Adrenérgicos beta 3/metabolismo
13.
Comp Hepatol ; 9: 7, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20727132

RESUMO

BACKGROUND: Hepatitis C virus (HCV) is a major cause of chronic hepatitis and a health problem affecting over 170 million people around the world. We previously studied transgenic mice that express HCV Core, Envelope 1 and Envelope 2 proteins predominantly in the liver, resulting in steatosis, liver and lymphoid tumors, and hepatocellular carcinoma. Herein, the immune-mediated cell response to hepatitis C antigens was evaluated by adoptive transfers of carboxyfluorescein succinimidyl ester (CFSE) labelled splenocytes from HCV immunized mice into HCV transgenic mice. RESULTS: In comparison to non-transgenic mice, there was a significant decrease in the percentage of CFSE-labeled CD4+ and CD8+ T cells in transgenic mouse peripheral blood receiving adoptive transfers from immunized donors. Moreover, the percentage of CFSE-labeled CD4+ and CD8+ T cells were significantly higher in the spleen of transgenic and non-transgenic mice when they received splenocytes from non-immunized than from immunized mice. On the other hand, the percentages of CD4+ and CD8+ T cells in the non-transgenic recipient mouse lymph nodes were significantly higher than the transgenic mice when they received the adoptive transfer from immunized donors. Interestingly, livers of transgenic mice that received transfers from immunized mice had a significantly higher percentage of CFSE labeled T cells than livers of non-transgenic mice receiving non-immunized transfers. CONCLUSIONS: These results suggest that the T cells from HCV immunized mice recognize the HCV proteins in the liver of the transgenic mouse model and homed to the HCV antigen expression sites. We propose using this model system to study active T cell responses in HCV infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA