Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 37(5): 791-803, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38652897

RESUMO

Burn pits are a method of open-air waste management that was common during military operations in Iraq, Afghanistan, and other regions in Southwest Asia. Veterans returning from deployment have reported respiratory symptoms, potentially from exposure to burn pit smoke, yet comprehensive assessment of such exposure on pulmonary health is lacking. We have previously shown that exposure to condensates from burn pit smoke emissions causes inflammation and cytotoxicity in mice. In this study, we explored the effects of burn pit smoke condensates on human airway epithelial cells (HAECs) to understand their impact on cellular targets in the human lung. HAECs were cultured at the air-liquid interface (ALI) and exposed to burn pit waste smoke condensates (plywood, cardboard, plastic, mixed, and mixed with diesel) generated under smoldering and flaming conditions. Cytotoxicity was evaluated by measuring transepithelial electrical resistance (TEER) and lactate dehydrogenase (LDH) release; toxicity scores (TSs) were quantified for each exposure. Pro-inflammatory cytokine release and modulation of gene expression were examined for cardboard and plastic condensate exposures. Burn pit smoke condensates generated under flaming conditions affected cell viability, with flaming mixed waste and plywood exhibiting the highest toxicity scores. Cardboard and plastic smoke condensates modulated cytokine secretion, with GM-CSF and IL-1ß altered in more than one exposure group. Gene expression of detoxifying enzymes (ALDH1A3, ALDH3A1, CYP1A1, CYP1B1, NQO1, etc.), mucins (MUC5AC, MUC5B), and cytokines was affected by several smoke condensates. Particularly, expression of IL6 was elevated following exposure to all burn pit smoke condensates, and polycyclic aromatic hydrocarbon acenaphthene was positively associated with the IL-6 level in the basolateral media of HAECs. These observations demonstrate that exposure to smoke condensates of materials present in burn pits adversely affects HAECs and that aberrant cytokine secretion and altered gene expression profiles following burn pit material smoke exposure could contribute to the development of airway disease.


Assuntos
Células Epiteliais , Fumaça , Humanos , Fumaça/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Cultivadas , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Linhagem Celular , Queima de Resíduos a Céu Aberto
2.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895029

RESUMO

Proteases such as neutrophil elastase cleave and activate the epithelial sodium channel (ENaC), causing airway dehydration. Our current study explores the impact of increased protease levels in vapers' airways on ENaC activity and airway dehydration. Human bronchial epithelial cultures (HBECs) were exposed to bronchoalveolar lavage fluid (BALF) from non-smokers, smokers and vapers. Airway surface liquid (ASL) height was measured by confocal microscopy as a marker of hydration. ENaC cleavage was measured by Western blotting. Human peripheral blood neutrophils were treated with a menthol-flavored e-liquid (Juul), and the resulting secretions were added to HBECs. BALF from smokers and vapers significantly and equally increased ENaC activity and decreased ASL height. The ASL height decrease was attenuated by protease inhibitors. Non-smokers' BALF had no effect on ENaC or ASL height. BALF from smokers and vapers, but not non-smokers, induced ENaC cleavage. E-liquid-treated neutrophil secretions cleaved ENaC and decreased ASL height. Our study demonstrated that elevated protease levels in vapers' airways have functional significance since they can activate ENaC, resulting in airway dehydration. Lung dehydration contributes to diseases like cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD) and asthma. Thus, our data predict that vaping, like smoking, will cause airway surface dehydration that likely leads to lung disease.


Assuntos
Vaping , Humanos , Vaping/efeitos adversos , Proteólise , Desidratação/metabolismo , Mucosa Respiratória/metabolismo , Pulmão/metabolismo , Canais Epiteliais de Sódio/metabolismo
3.
J Appl Toxicol ; 43(6): 862-873, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36594405

RESUMO

Cigarette smoke (CS) exposure induces both cytotoxicity and inflammation, and often causes COPD, a growing cause of morbidity and mortality. CS also inhibits the CFTR Cl- channel, leading to airway surface liquid dehydration, which is predicated to impair clearance of inhaled pathogens and toxicants. Numerous in vitro studies have been performed that utilize acute (≤24 h) CS exposures. However, CS exposure is typically chronic. We evaluated the feasibility of using British-American Tobacco (BAT)-designed CS exposure chambers for chronically exposing human bronchial epithelial cultures (HBECs) to CS. HBECs are polarized and contain mucosal and serosal sides. In vivo, inhaled CS interacts with mucosal membranes, and BAT chambers are designed to direct CS to HBEC mucosal surfaces while keeping CS away from serosal surfaces via a perfusion system. We found that serosal perfusion was absolutely required to maintain HBEC viability over time following chronic CS exposure. Indeed, with this system, we found that CS increased inflammation and mucin levels, while decreasing CFTR function. Without this serosal perfusion, CS was extremely toxic within 24 h. We therefore propose that 5- and 10-day CS exposures with serosal perfusion are suitable for measuring chronic CS exposure and can be used for monitoring new and emerging tobacco products.


Assuntos
Fumar Cigarros , Regulador de Condutância Transmembrana em Fibrose Cística , Humanos , Brônquios , Nicotiana/toxicidade , Inflamação , Células Epiteliais
4.
Circulation ; 145(3): 219-232, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35041473

RESUMO

Electronic cigarettes (e-cigarettes) are battery powered electronic nicotine delivery systems that use a propylene glycol/vegetable glycerin base to deliver vaporized nicotine and flavorings to the body. E-cigarettes became commercially available without evidence regarding their risks, long-term safety, or utility in smoking cessation. Recent clinical trials suggest that e-cigarette use with counseling may be effective in reducing cigarette use but not nicotine dependence. However, meta-analyses of observational studies demonstrate that e-cigarette use is not associated with smoking cessation. Cardiovascular studies reported sympathetic activation, vascular stiffening, and endothelial dysfunction, which are associated with adverse cardiovascular events. The majority of pulmonary clinical trials in e-cigarette users included standard spirometry as the primary outcome measure, reporting no change in lung function. However, studies reported increased biomarkers of pulmonary disease in e-cigarette users. These studies were conducted in adults, but >30% of high school-age adolescents reported e-cigarette use. The effects of e-cigarette use on cardiopulmonary endpoints in adolescents and young adults remain unstudied. Because of adverse clinical findings and associations between e-cigarette use and increased incidence of respiratory diseases in people who have never smoked, large longitudinal studies are needed to understand the risk profile of e-cigarettes. Consistent with the Centers for Disease Control and Prevention recommendations, clinicians should monitor the health risks of e-cigarette use, discourage nonsmokers and adolescents from using e-cigarettes, and discourage smokers from engaging in dual use without cigarette reduction or cessation.


Assuntos
Fumar Cigarros/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Papel do Médico , Vaping/efeitos adversos , Humanos , Fumar/epidemiologia , Tabagismo/prevenção & controle
5.
Nicotine Tob Res ; 24(3): 395-399, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519792

RESUMO

INTRODUCTION: Alveolar macrophages (AMs) are lung-resident immune cells that phagocytose inhaled particles and pathogens, and help coordinate the lung's immune response to infection. Little is known about the impact of chronic e-cigarette use (ie, vaping) on this important pulmonary cell type. Thus, we determined the effect of vaping on AM phenotype and gene expression. AIMS AND METHODS: We recruited never-smokers, smokers, and e-cigarette users (vapers) and performed research bronchoscopies to isolate AMs from bronchoalveolar lavage fluid samples and epithelial cells from bronchial brushings. We then performed morphological analyses and used the Nanostring platform to look for changes in gene expression. RESULTS: AMs obtained from smokers and vapers were phenotypically distinct from those obtained from nonsmokers, and from each other. Immunocytochemistry revealed that vapers AMs had significantly elevated inducible nitric oxide synthase (M1) expression and significantly reduced CD301a (M2) expression compared with nonsmokers or smokers. Vapers' AMs and bronchial epithelia exhibited unique changes in gene expression compared with nonsmokers or smokers. Moreover, vapers' AMs were the most affected of all groups and had 124 genes uniquely downregulated. Gene ontology analysis revealed that vapers and smokers had opposing changes in biological processes. CONCLUSIONS: These data indicate that vaping causes unique changes to AMs and bronchial epithelia compared with nonsmokers and smokers which may impact pulmonary host defense. IMPLICATIONS: These data indicate that normal "healthy" vapers have altered AMs and may be at risk of developing abnormal immune responses to inflammatory stimuli.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Expressão Gênica , Humanos , Macrófagos Alveolares , Vaping/efeitos adversos
7.
J Appl Toxicol ; 41(3): 493-505, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33034066

RESUMO

"Pod-based" e-cigarettes such as JUUL are currently the most prevalent electronic nicotine delivery systems (ENDS) in the United States. JUUL-type ENDS utilize nicotine salts protonated with benzoic acid rather than freebase nicotine. However, limited information is available on the cellular effects of these products. Cytoplasmic Ca2+ is a universal second messenger that controls many cellular functions including cell growth and cell death. Of note, dysregulation of cell Ca2+ homeostasis has been linked with several disease processes including autoimmune disease and several types of cancer. We exposed HEK293T cells and THP-1 macrophage-like cells to different JUUL e-liquids. We evaluated their effects on cellular viability and Ca2+ signaling by measuring fluorescence from calcein-AM/propidium iodide and Fluo-4, respectively. E-liquid autofluorescence was used to look for e-liquid permeation into cells. To identify the mechanisms behind the Ca2+ responses, different inhibitors of Ca2+ channels and phospholipase C signaling were used. JUUL e-liquids caused significant cytotoxic effects, with "Mint" flavor being the most cytotoxic. The Mint flavored e-liquid also caused a significant elevation in cytoplasmic Ca2+ . Using autofluorescence, the permeation of JUUL e-liquids into live cells was confirmed, indicating that intracellular organelles are directly exposed to e-liquids. Further studies identified the endoplasmic reticulum as being the source of e-liquid-induced changes in cytoplasmic Ca2+ . Nicotine salt-based e-liquids cause cytotoxicity and elevate cytoplasmic Ca2+ , indicating that they can exert biological effects beyond what would be expected with nicotine alone. These effects are flavor-dependent, and we propose that flavored e-liquids be reassessed for potential lung toxicity.


Assuntos
Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/toxicidade , Nicotina/toxicidade , Humanos , Estados Unidos
9.
Am J Respir Cell Mol Biol ; 63(6): 767-779, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32877614

RESUMO

Smoking remains a leading cause of preventable morbidity and mortality worldwide. Despite a downward trend in cigarette use, less-regulated tobacco products, such as cigarillos, which are often flavored to appeal to specific demographics, such as younger people, are becoming increasingly popular. Cigar/cigarillo smoking has been considered a safer alternative to cigarettes; however, the health risks associated with cigar in comparison with cigarette smoking are not well understood. To address this knowledge gap, we characterized the effects of multiple brands of cigarillos on the airway epithelium using ex vivo and in vivo models. To analyze these effects, we assessed the cellular viability and integrity of smoke-exposed primary airway cell cultures. We also investigated the protein compositions of apical secretions from cigarillo-exposed airway epithelial cultures and BAL fluid of cigarillo-exposed mice through label-free quantitative proteomics and determined the chemical composition of smoke collected from the investigated cigarillo products. We found that cigarillo smoke exerts similar or greater effects than cigarette smoke in terms of reduced cell viability; altered protein levels, including those of innate immune proteins; induced oxidative-stress markers; and greater nicotine delivery to cells. The analysis of the chemical composition of the investigated cigarillo products revealed differences that might be linked to the differential effects of these products on cell viability and protein abundance profiles, which have been associated with a range of health risks in the context of airway biology. These findings contradict the assumption that cigarillos might be safer and less harmful than cigarettes. Instead, our results indicate that cigarillo smoke is associated with equal or greater health risks and the same or increased airway toxicity compared with cigarette smoke.


Assuntos
Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Nicotina/farmacologia , Sistema Respiratório/metabolismo , Animais , Fumar Cigarros/efeitos adversos , Aromatizantes/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Sistema Respiratório/efeitos dos fármacos , Fumar/efeitos adversos , Nicotiana/efeitos adversos , Produtos do Tabaco/efeitos adversos
10.
Am J Respir Crit Care Med ; 200(11): 1392-1401, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390877

RESUMO

Rationale: Proteolysis is a key aspect of the lung's innate immune system. Proteases, including neutrophil elastase and MMPs (matrix metalloproteases), modulate cell signaling, inflammation, tissue remodeling, and leukocyte recruitment via cleavage of their target proteins. Excessive proteolysis occurs with chronic tobacco use and is causative for bronchiectasis and emphysema. The effect of e-cigarettes (vaping) on proteolysis is unknown.Objectives: We used protease levels as biomarkers of harm to determine the impact of vaping on the lung.Methods: We performed research bronchoscopies on healthy nonsmokers, cigarette smokers, and e-cigarette users (vapers), and determined protease levels in BAL. In parallel, we studied the effects of e-cigarette components on protease secretion in isolated human blood neutrophils and BAL-derived macrophages. We also analyzed the nicotine concentration in induced sputum and BAL.Measurements and Main Results: Neutrophil elastase, MMP-2, and MMP-9 activities and protein levels were equally elevated in both vapers' and smokers' BAL relative to nonsmokers. In contrast, antiprotease levels were unchanged. We also found that exposure of isolated neutrophils and macrophages to nicotine elicited dose-dependent increases in protease release. After vaping, measurable levels of nicotine were detectable in sputum and BAL, which corresponded to the half-maximal effective concentration values for protease release seen in immune cells.Conclusions: We conclude that vaping induces nicotine-dependent protease release from resident pulmonary immune cells. Thus, chronic vaping disrupts the protease-antiprotease balance by increasing proteolysis in lung, which may place vapers at risk of developing chronic lung disease. These data indicate that vaping may not be safer than tobacco smoking.


Assuntos
Elastase de Leucócito/metabolismo , Pulmão/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Vaping/efeitos adversos , Adulto , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar/química , Cotinina/análogos & derivados , Cotinina/análise , Feminino , Humanos , Pulmão/química , Pulmão/enzimologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Nicotina/análise , Nicotina/farmacologia
11.
Eur Respir J ; 52(4)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30190268

RESUMO

The multi-organ disease cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR) that lead to diminished transepithelial anion transport. CF lungs are characterised by airway surface liquid (ASL) dehydration, chronic infection/inflammation and neutrophilia. Dysfunctional CFTR may upregulate the epithelial Na+ channel (ENaC), further exacerbating dehydration. We previously demonstrated that short palate lung and nasal epithelial clone 1 (SPLUNC1) negatively regulates ENaC in normal airway epithelia.Here, we used pulmonary tissue samples, sputum and human bronchial epithelial cells (HBECs) to determine whether SPLUNC1 could regulate ENaC in a CF-like environment.We found reduced endogenous SPLUNC1 in CF secretions, and rapid degradation of recombinant SPLUNC1 (rSPLUNC1) by CF secretions. Normal sputum, containing SPLUNC1 and SPLUNC1-derived peptides, inhibited ENaC in both normal and CF HBECs. Conversely, CF sputum activated ENaC, and rSPLUNC1 could not reverse this phenomenon. Additionally, we observed upregulation of ENaC protein levels in human CF bronchi. Unlike SPLUNC1, the novel SPLUNC1-derived peptide SPX-101 resisted protease degradation, bound apically to HBECs, inhibited ENaC and prevented ASL dehydration following extended pre-incubation with CF sputum.Our data indicate that CF mucosal secretions drive ASL hyperabsorption and that protease-resistant peptides, e.g. SPX-101, can reverse this effect to rehydrate CF ASL.


Assuntos
Fibrose Cística/metabolismo , Desidratação/patologia , Células Epiteliais/metabolismo , Glicoproteínas/metabolismo , Fosfoproteínas/metabolismo , Células Cultivadas , Canais Epiteliais de Sódio/metabolismo , Glicoproteínas/genética , Humanos , Transporte de Íons , Pulmão/metabolismo , Fosfoproteínas/genética , Mucosa Respiratória/metabolismo
13.
FASEB J ; : fj201800345R, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29890087

RESUMO

Chronic obstructive pulmonary disease (COPD) is a growing cause of morbidity and mortality worldwide. Cigarette smoke (CS) exposure, a major cause of COPD, dysregulates airway epithelial ion transport and diminishes airway surface liquid (ASL) volume. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is secreted into the airway lumen where it maintains airway hydration via interactions with the epithelial Na+ channel (ENaC). Although ASL hydration is dysregulated in CS-exposed/COPD airways, effects of CS on SPLUNC1 have not been elucidated. We hypothesized that CS alters SPLUNC1 activity, therefore contributing to ASL dehydration. CS exposure caused irreversible SPLUNC1 aggregation and prevented SPLUNC1 from internalizing ENaC and maintaining ASL hydration. Proteomic analysis revealed αß-unsaturated aldehyde modifications to SPLUNC1's cysteine residues. Removal of these cysteines prevented SPLUNC1 from regulating ENaC/ASL volume. In contrast, SPX-101, a peptide mimetic of natural SPLUNC1, that internalizes ENaC, but does not contain cysteines was unaffected by CS. SPX-101 increased ASL hydration and attenuated ENaC activity in airway cultures after CS exposure and prolonged survival in a chronic airway disease model. These findings suggest that the CS-induced defects in SPLUNC1 can be circumvented, thus making SPX-101 a novel candidate for the treatment of mucus dehydration in COPD. -Moore, P. J., Reidel, B., Ghosh, A., Sesma, J., Kesimer, M., Tarran, R. Cigarette smoke modifies and inactivates SPLUNC1, leading to airway dehydration.

14.
Am J Respir Crit Care Med ; 198(1): 67-76, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481290

RESUMO

RATIONALE: E-cigarettes vaporize propylene glycol/vegetable glycerin (PG/VG), nicotine, and flavorings. However, the long-term health effects of exposing lungs to vaped e-liquids are unknown. OBJECTIVES: To determine the effects of chronic vaping on pulmonary epithelia. METHODS: We performed research bronchoscopies on healthy nonsmokers, cigarette smokers, and e-cigarette users (vapers) and obtained bronchial brush biopsies and lavage samples from these subjects for proteomic investigation. We further employed in vitro and murine exposure models to support our human findings. MEASUREMENTS AND MAIN RESULTS: Visual inspection by bronchoscopy revealed that vaper airways appeared friable and erythematous. Epithelial cells from biopsy samples revealed approximately 300 proteins that were differentially expressed in smoker and vaper airways, with only 78 proteins being commonly altered in both groups and 113 uniquely altered in vapers. For example, CYP1B1 (cytochrome P450 family 1 subfamily B member 1), MUC5AC (mucin 5 AC), and MUC4 levels were increased in vapers. Aerosolized PG/VG alone significantly increased MUC5AC protein in human airway epithelial cultures and in murine nasal epithelia in vivo. We also found that e-liquids rapidly entered cells and that PG/VG reduced membrane fluidity and impaired protein diffusion. CONCLUSIONS: We conclude that chronic vaping exerts marked biological effects on the lung and that these effects may in part be mediated by the PG/VG base. These changes are likely not harmless and may have clinical implications for the development of chronic lung disease. Further studies will be required to determine the full extent of vaping on the lung.


Assuntos
Brônquios/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nicotina/efeitos adversos , Proteoma/efeitos dos fármacos , Fumantes , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
15.
Toxicology ; 394: 11-18, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29196190

RESUMO

Cigarette smoking is a significant risk factor for cataract. However, the mechanism by which cigarette smoke (CS) causes cataract remains poorly understood. We had earlier shown that in CS-exposed guinea pig, p-benzoquinone (p-BQ) derived from CS in the lungs is carried by the circulatory system to distant organs and induces various smoke-related pathogeneses. Here, we observed that CS exposure caused accumulation of the p-BQ-protein adduct in the eye lens of guinea pigs. We also observed accumulation of the p-BQ-protein adduct in resected lens from human smokers with cataract. No such accumulation was observed in the lens of never smokers. p-BQ is a strong arylating agent that forms Michael adducts with serum albumin and haemoglobin resulting in alterations of structure and function. A major protein in the mammalian eye lens is αA-crystallin, which is a potent molecular chaperone. αA-crystallin plays a key role in maintaining the integrity and transparency of the lens. SDS-PAGE indicated that p-BQ induced aggregation of αA-crystallin. Various biophysical techniques including UV-vis spectroscopy, fluorescence spectroscopy, FT-IR, bis-ANS titration suggested a perturbation of structure and chaperone function of αA-crystallin upon p-BQ modification. Our results indicate that p-BQ is a causative agent involved in the modification of αA-crystallin and pathogenesis of CS-induced cataract. Our findings would educate public about the impacts of smoking on eye health and help to discourage them from smoking. The study might also help scientists to develop new drugs for the intervention of CS-induced cataract at an early stage.


Assuntos
Benzoquinonas/toxicidade , Catarata/etiologia , Catarata/metabolismo , Fumar Cigarros/efeitos adversos , alfa-Cristalinas/metabolismo , Idoso , Animais , Benzoquinonas/química , Benzoquinonas/farmacocinética , Benzoquinonas/intoxicação , Catarata/induzido quimicamente , Catarata/patologia , Fumar Cigarros/metabolismo , Fumar Cigarros/patologia , Escherichia coli/genética , Escherichia coli/metabolismo , Cobaias , Humanos , Cápsula do Cristalino/efeitos dos fármacos , Cápsula do Cristalino/metabolismo , Cápsula do Cristalino/patologia , Masculino , Pessoa de Meia-Idade , Chaperonas Moleculares/metabolismo , Agregação Patológica de Proteínas/induzido quimicamente , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , alfa-Cristalinas/biossíntese , alfa-Cristalinas/química , alfa-Cristalinas/genética
16.
Appl In Vitro Toxicol ; 3(2): 193-198, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28620626

RESUMO

Cytosolic Ca2+ is a universal second messenger that is involved in many processes throughout the body, including the regulation of cell growth/cell division, apoptosis, and the secretion of both ions, and macromolecules. Tobacco smoke exerts multiple effects on airway epithelia and we have previously shown that Kentucky reference cigarette smoke exposure elevated the second messenger Ca2+, leading to dysfunctional ion secretion. In this study, we tested whether little cigar and commercial cigarette smoke exposure exerts similar effects on intracellular Ca2+ levels. Indeed, Swisher Sweets, Captain Black, and Cheyenne little cigars, as well as Camel, Marlboro, and Newport cigarettes, triggered a comparable increase in intracellular Ca2+ as seen with Kentucky reference cigarettes in human bronchial epithelia. We also found that Kentucky reference cigarette smoke exposure caused increases in Ca2+ in HEK293T cells and that similar increases in Ca2+ were seen with the tobacco smoke metabolites 1-NH2-naphthalene, formaldehyde, nicotine, and nicotine-derived nitrosamine ketone. Given the large number of physiological processes governed by changes in cytosolic Ca2+, our data suggest that Ca2+ signaling is a useful and reproducible assay that can be used to probe the propensity of tobacco products and their constituents to cause toxicity.

17.
Am J Physiol Lung Cell Mol Physiol ; 313(3): L425-L452, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28522563

RESUMO

Accurate and reliable measurements of exposure to tobacco products are essential for identifying and confirming patterns of tobacco product use and for assessing their potential biological effects in both human populations and experimental systems. Due to the introduction of new tobacco-derived products and the development of novel ways to modify and use conventional tobacco products, precise and specific assessments of exposure to tobacco are now more important than ever. Biomarkers that were developed and validated to measure exposure to cigarettes are being evaluated to assess their use for measuring exposure to these new products. Here, we review current methods for measuring exposure to new and emerging tobacco products, such as electronic cigarettes, little cigars, water pipes, and cigarillos. Rigorously validated biomarkers specific to these new products have not yet been identified. Here, we discuss the strengths and limitations of current approaches, including whether they provide reliable exposure estimates for new and emerging products. We provide specific guidance for choosing practical and economical biomarkers for different study designs and experimental conditions. Our goal is to help both new and experienced investigators measure exposure to tobacco products accurately and avoid common experimental errors. With the identification of the capacity gaps in biomarker research on new and emerging tobacco products, we hope to provide researchers, policymakers, and funding agencies with a clear action plan for conducting and promoting research on the patterns of use and health effects of these products.


Assuntos
Biomarcadores/análise , Sistemas Eletrônicos de Liberação de Nicotina , Exposição Ambiental/análise , Nicotiana/efeitos adversos , Humanos , Metaboloma , Nicotina/análise , Nicotina/química
18.
Cell Death Discov ; 3: 17019, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28496992

RESUMO

Addition of flavors reduces the harsh taste of tobacco, facilitating the initiation and maintenance of addiction among youths. Flavored cigarettes (except menthol) are now banned. However, the legislation on little cigars remains unclear and flavored little cigars are currently available for purchase. Since inhaled tobacco smoke directly exerts toxic effects on the lungs, we tested whether non-flavored and flavored little cigar smoke exposure had the potential for harm in cultured pulmonary epithelia. We cultured Calu-3 lung epithelia on both 96-well plates and at the air-liquid interface and exposed them to smoke from non-flavored Swisher Sweets and flavored (sweet cherry, grape, menthol, peach and strawberry) Swisher Sweets little cigars. Irrespective of flavor, acute little cigar smoke exposure (10×35 ml puffs) significantly increased cell death and decreased the percentage of live cells. Chronic exposure (10×35 ml puffs per day for 4 days) of smoke to Calu-3 cultures significantly increased lactate dehydrogenase release, further indicating toxicity. To determine whether this exposure was associated with increased cell death/apoptosis, a protein array was used. Chronic exposure to smoke from all types of little cigars induced the activation of the two major apoptosis pathways, namely the intrinsic (mitochondrial-mediated) and the extrinsic (death receptor-mediated) pathways. Both flavored and non-flavored little cigar smoke caused similar levels of toxicity and activation of apoptosis, suggesting that flavored and non-flavored little cigars are equally harmful. Hence, the manufacture, advertisement, sale and use of both non-flavored and flavored little cigars should be strictly controlled.

19.
Sci Rep ; 7: 46239, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28447619

RESUMO

Little cigars (LCs) are regulated differently than cigarettes, allowing them to be potentially targeted at youth/young adults. We exposed human bronchial epithelial cultures (HBECs) to air or whole tobacco smoke from cigarettes vs. LCs. Chronic smoke exposure increased the number of dead cells, lactate dehydrogenase release, and interleukin-8 (IL-8) secretion and decreased apical cilia, cystic fibrosis transmembrane conductance regulator (CFTR) protein levels, and transepithelial resistance. These adverse effects were significantly greater in LC-exposed HBECs than cigarette exposed cultures. LC-exposure also elicited unique gene expression changes and altered the proteomic profiles of airway apical secretions compared to cigarette-exposed HBECs. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that LCs produced more chemicals than cigarettes, suggesting that the increased chemical load of LCs may be the cause of the greater toxicity. This is the first study of the biological effects of LCs on pulmonary epithelia and our observations strongly suggest that LCs pose a more severe danger to human health than cigarettes.


Assuntos
Brônquios/metabolismo , Brônquios/patologia , Fumar Charutos/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Produtos do Tabaco/toxicidade , Morte Celular/efeitos dos fármacos , Linhagem Celular , Alcatrão , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Inflamação/patologia , Espectrometria de Massas , Proteoma/metabolismo , Nicotiana
20.
Toxicol Rep ; 3: 295-305, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28959550

RESUMO

Cigarette smoke (CS) is an important source of morbidity and early mortality worldwide. Besides causing various life-threatening diseases, CS is also known to cause hypoxia. Chronic hypoxia would induce early aging and premature death. Continuation of smoking during pregnancy is a known risk for the unborn child. Although carbon monoxide (CO) is considered to be a cause of hypoxia, the effect of other component(s) of CS on hypoxia is not known. Here we show by immunoblots and mass spectra analyses that in smoker's blood p-benzoquinone (p-BQ) derived from CS forms covalent adducts with cysteine 93 residues in both the ß chains of hemoglobin (Hb) producing Hb-p-BQ adducts. UV-vis spectra and CD spectra analyses show that upon complexation with p-BQ the structure of Hb is altered. Compared to nonsmoker's Hb, the content of α-helix decreased significantly in smoker's Hb (p = 0.0224). p-BQ also induces aggregation of smoker's Hb as demonstrated by SDS-PAGE, dynamic light scattering and atomic force microscopy. Alteration of Hb structure in smoker's blood is accompanied by reduced oxygen binding capacity. Our results provide the first proof that p-BQ is a cause of hypoxia in smokers. We also show that although both p-BQ and CO are responsible for causing hypoxia in smokers, exposure to CO further affects the function over and above that produced by Hb-p-BQ adduct.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA