Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Traffic ; 25(1): e12929, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272449

RESUMO

Ciliary transport in eukaryotic cells is an intricate and conserved process involving the coordinated assembly and functioning of a multiprotein intraflagellar transport (IFT) complex. Among the various IFT proteins, intraflagellar transport 52 (IFT52) plays a crucial role in ciliary transport and is implicated in various ciliopathies. IFT52 is a core component of the IFT-B complex that facilitates movement of cargoes along the ciliary axoneme. Stable binding of the IFT-B1 and IFT-B2 subcomplexes by IFT52 in the IFT-B complex regulates recycling of ciliary components and maintenance of ciliary functions such as signal transduction and molecular movement. Mutations in the IFT52 gene can disrupt ciliary trafficking, resulting in dysfunctional cilia and affecting cellular processes in ciliopathies. Such ciliopathies caused by IFT52 mutations exhibit a wide range of clinical features, including skeletal developmental abnormalities, retinal degeneration, respiratory failure and neurological abnormalities in affected individuals. Therefore, IFT52 serves as a promising biomarker for the diagnosis of various ciliopathies, including short-rib thoracic dysplasia 16 with or without polydactyly. Here, we provide an overview of the IFT52-mediated molecular mechanisms underlying ciliary transport and describe the IFT52 mutations that cause different disorders associated with cilia dysfunction.


Assuntos
Cílios , Ciliopatias , Humanos , Transporte Biológico , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Mutação , Transporte Proteico , Proteínas/metabolismo , Transdução de Sinais
2.
J Hum Genet ; 68(4): 287-290, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36526684

RESUMO

Autosomal recessive osteopetrosis (ARO) is a rare genetic disorder caused by impaired osteoclast activity. In this study, we describe a 4-year-old boy with increased bone density due to osteopetrosis, autosomal recessive 8. Using genome sequencing, we identified a large deletion in the 5'-untranslated region (UTR) of SNX10 (sorting nexin 10), where the regulatory region of this gene is located. This large deletion resulted in the absence of the SNX10 transcript and led to abnormal osteoclast activity. SNX10 is one of the nine genes known to cause ARO, shown to interact with V-ATPase (vacuolar type H( + )-ATPase), as it plays an important role in bone resorption. Our study highlights the importance of regulatory regions in the 5'-UTR of SNX10 for its expression while also demonstrating the importance of genome sequencing for detecting large deletion of the regulatory region of SNX10.


Assuntos
Osteopetrose , Masculino , Humanos , Pré-Escolar , Mutação , Osteopetrose/diagnóstico por imagem , Osteopetrose/genética , Sequência de Bases , Osteoclastos/metabolismo , Adenosina Trifosfatases/genética , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
3.
Autophagy ; 18(8): 1763-1784, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34836490

RESUMO

Selective degradation of protein aggregates by macroautophagy/autophagy is an essential homeostatic process of safeguarding cells from the effects of proteotoxicity. Among the ubiquitin-like proteins, NEDD8 conjugation to misfolded proteins is prominent in stress-induced protein aggregates, albeit the function of neddylation in autophagy is unclear. Here, we report that polyneddylation functions as a post-translational modification for autophagic degradation of proteotoxic-stress induced protein aggregates. We also show that HYPK functions as an autophagy receptor in the polyneddylation-dependent aggrephagy. The scaffolding function of HYPK is facilitated by its C-terminal ubiquitin-associated domain and N-terminal tyrosine-type LC3-interacting region which bind to NEDD8 and LC3 respectively. Both NEDD8 and HYPK are positive modulators of basal and proteotoxicity-induced autophagy, leading to protection of cells from protein aggregates, such as aggregates of mutant HTT exon 1. Thus, we propose an indispensable and additive role of neddylation and HYPK in clearance of protein aggregates by autophagy, resulting in cytoprotective effect during proteotoxic stress.Abbreviations: ATG5, autophagy related 5; ATG12, autophagy related 12; ATG14, autophagy related 14; BECN1, beclin 1; CBL, casitas B-lineage lymphoma; CBLB, Cbl proto-oncogene B; GABARAP, GABA type A receptor-associated protein; GABARAPL1, GABA type A receptor associated protein like 1; GABARAPL2, GABA type A receptor associated protein like 2; GFP, green fluorescent protein; HTT, huntingtin; HTT97Q exon 1, huntingtin 97-glutamine exon 1; HUWE1, HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1; HYPK, huntingtin interacting protein K; IgG, immunoglobulin G; IMR-32, Institute for Medical Research-32; KD, knockdown; Kd, dissociation constant; LAMP1, lysosomal associated membrane protein 1; LIR, LC3 interacting region; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MAP1LC3A/LC3A, microtubule associated protein 1 light chain 3 alpha; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; MARK1, microtubule affinity regulating kinase 1; MARK2, microtubule affinity regulating kinase 2; MARK3, microtubule affinity regulating kinase 3; MARK4, microtubule affinity regulating kinase 4; MCF7, Michigan Cancer Foundation-7; MTOR, mechanistic target of rapamycin kinase; NAE1, NEDD8 activating enzyme E1 subunit 1; NBR1, NBR1 autophagy cargo receptor; NEDD8, NEDD8 ubiquitin like modifier; Ni-NTA, nickel-nitrilotriacetic acid; NUB1, negative regulator of ubiquitin like proteins 1; PIK3C3, phosphatidylinositol 3-kinase catalytic subunit type 3; PolyQ, poly-glutamine; PSMD8, proteasome 26S subunit, non-ATPase 8; RAD23A, RAD23 homolog A, nucleotide excision repair protein; RAD23B, RAD23 homolog B, nucleotide excision repair protein; RFP, red fluorescent protein; RPS27A, ribosomal protein S27a; RSC1A1, regulator of solute carriers 1; SNCA, synuclein alpha; SIK1, salt inducible kinase 1; siRNA, small interfering ribonucleic acid; SOD1, superoxide dismutase 1; SPR, surface plasmon resonance; SQSTM1, sequestosome 1; SUMO1, small ubiquitin like modifier 1; TAX1BP1, Tax1 binding protein 1; TDRD3, tudor domain containing 3; TNRC6C, trinucleotide repeat containing adaptor 6C; TOLLIP, toll interacting protein; TUBA, tubulin alpha; TUBB, tubulin beta class I; UBA, ubiquitin-associated; UBA1, ubiquitin like modifier activating enzyme 1; UBA5, ubiquitin like modifier activating enzyme 5; UBAC1, UBA domain containing 1; UBAC2, UBA domain containing 2; UBAP1, ubiquitin associated protein 1; UBAP2, ubiquitin associated protein 2; UBASH3B, ubiquitin associated and SH3 domain containing B; UBD/FAT10, ubiquitin D; UBE2K, ubiquitin conjugating enzyme E2 K; UBLs, ubiquitin-like proteins; UBL7, ubiquitin like 7; UBQLN1, ubiquilin 1; UBQLN2, ubiquilin 2; UBQLN3, ubiquilin 3; UBQLN4, ubiquilin 4; UBXN1, UBX domain protein 1; ULK1, unc-51 like autophagy activating kinase 1; URM1, ubiquitin related modifier 1; USP5, ubiquitin specific peptidase 5; USP13, ubiquitin specific peptidase 13; VPS13D, vacuolar protein sorting 13 homolog D.


Assuntos
Autofagia , Proteínas de Transporte , Tubulina (Proteína) , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases , Glutamina , Proteínas Associadas aos Microtúbulos/metabolismo , Agregados Proteicos , Proteases Específicas de Ubiquitina , Ubiquitinas , Ácido gama-Aminobutírico
4.
Neurotoxicology ; 77: 169-180, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31987860

RESUMO

Malaria is an infectious disease that is caused by different species of Plasmodium. Several antimalarial drugs are used to counter the spread and infectivity of Plasmodium species. However, humans are also vulnerable to many of the antimalarial drugs, including the quinoline-based drugs. In particular, the antimalarial mefloquine has been reported to show adverse neuropsychiatric effects in humans. Though mefloquine is known to be neurotoxic, the molecular mechanisms associated with this phenomenon are still obscure. In this study, we show that mefloquine binds to and inactivates the human acyl-CoA binding protein (hACBP), potentially inducing redox stress in human neuroblastoma cells (IMR-32). Mefloquine occupies the acyl-CoA binding pocket of hACBP by interacting with several of the critical acyl-CoA binding amino acids. This leads to the competitive inhibition of acyl-CoA(s) binding to hACBP and to the accumulation of lipid droplets inside the IMR-32 cells. The accumulation of cytosolic lipid globules and oxidative stress finally correlates with the apoptotic death of cells. Taken together, our study deciphers a mechanistic detail of how mefloquine leads to the death of human cells by perturbing the activity of hACBP and lipid homeostasis.


Assuntos
Antimaláricos/toxicidade , Apoptose/efeitos dos fármacos , Inibidor da Ligação a Diazepam/metabolismo , Mefloquina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Antimaláricos/metabolismo , Linhagem Celular Tumoral , Humanos , Mefloquina/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA