Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39164213

RESUMO

BACKGROUND: With the significant shift in the classification, risk stratification, and standards of care for gliomas, we sought to understand how the overall survival of patients with these tumors is impacted by molecular features, clinical metrics, and treatment received. METHODS: We assembled a cohort of patients with a histopathologically diagnosed glioma from The Cancer Genome Atlas, Project Genomics Evidence Neoplasia Information Exchange, and Dana-Farber Cancer Institute/Brigham and Women's Hospital. This incorporated retrospective clinical, histological, and molecular data alongside prospective assessment of patient survival. RESULTS: 4,400 gliomas were identified: 2,195 glioblastoma, 1,198 IDH1/2-mutant astrocytoma, 531 oligodendroglioma, 271 other IDH1/2-wildtype glioma, and 205 pediatric-type glioma. Molecular classification updated 27.2% of gliomas from their original histopathologic diagnosis. Examining the distribution of molecular alterations across glioma subtypes revealed mutually exclusive alterations within tumorigenic pathways. Non-TCGA patients had significantly improved overall survival compared to TCGA patients, with 26.7%, 55.6%, and 127.8% longer survival for glioblastoma, IDH1/2-mutant astrocytoma, and oligodendroglioma respectively (all p<0.01). Several prognostic features were characterized, including NF1 alteration and 21q loss in glioblastoma, and EGFR amplification and 22q loss in IDH1/2-mutant astrocytoma. Leveraging the size of this cohort, nomograms were generated to assess the probability of overall survival based on patient age, the molecular features of a tumor, and the treatment received. CONCLUSIONS: By applying modern molecular criteria, we characterize the genomic diversity across glioma subtypes, identify clinically applicable prognostic features, and provide a contemporary update on patient survival to serve as a reference for ongoing investigations.

2.
Neuro Oncol ; 26(2): 323-334, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37713468

RESUMO

BACKGROUND: Distinct genetic alterations determine glioma aggressiveness, however, the diversity of somatic mutations contributing to peritumoral hyperexcitability and seizures over the course of the disease is uncertain. This study aimed to identify tumor somatic mutation profiles associated with clinically significant hyperexcitability. METHODS: A single center cohort of adults with WHO grades 1-4 glioma and targeted exome sequencing (n = 1716) was analyzed and cross-referenced with a validated EEG database to identify the subset of individuals who underwent continuous EEG monitoring (n = 206). Hyperexcitability was defined by the presence of lateralized periodic discharges and/or electrographic seizures. Cross-validated discriminant analysis models trained exclusively on recurrent somatic mutations were used to identify variants associated with hyperexcitability. RESULTS: The distribution of WHO grades and tumor mutational burdens were similar between patients with and without hyperexcitability. Discriminant analysis models classified the presence or absence of EEG hyperexcitability with an overall accuracy of 70.9%, regardless of IDH1 R132H inclusion. Predictive variants included nonsense mutations in ATRX and TP53, indel mutations in RBBP8 and CREBBP, and nonsynonymous missense mutations with predicted damaging consequences in EGFR, KRAS, PIK3CA, TP53, and USP28. This profile improved estimates of hyperexcitability in a multivariate analysis controlling for age, sex, tumor location, integrated pathologic diagnosis, recurrence status, and preoperative epilepsy. Predicted somatic mutation variants were over-represented in patients with hyperexcitability compared to individuals without hyperexcitability and those who did not undergo continuous EEG. CONCLUSION: These findings implicate diverse glioma somatic mutations in cancer genes associated with peritumoral hyperexcitability. Tumor genetic profiling may facilitate glioma-related epilepsy prognostication and management.


Assuntos
Neoplasias Encefálicas , Epilepsia , Glioma , Adulto , Humanos , Neoplasias Encefálicas/patologia , Perfil Genético , Glioma/patologia , Mutação , Convulsões , Ubiquitina Tiolesterase/genética
3.
medRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865325

RESUMO

Distinct genetic alterations determine glioma aggressiveness, however the diversity of somatic mutations contributing to peritumoral hyperexcitability and seizures is uncertain. In a large cohort of patients with sequenced gliomas (n=1716), we used discriminant analysis models to identify somatic mutation variants associated with electrographic hyperexcitability in a subset with continuous EEG recording (n=206). Overall tumor mutational burdens were similar between patients with and without hyperexcitability. A cross-validated model trained exclusively on somatic mutations classified the presence or absence of hyperexcitability with an overall accuracy of 70.9%, and improved estimates of hyperexcitability and anti-seizure medication failure in multivariate analysis incorporating traditional demographic factors and tumor molecular classifications. Somatic mutation variants of interest were also over-represented in patients with hyperexcitability compared to internal and external reference cohorts. These findings implicate diverse mutations in cancer genes associated with the development of hyperexcitability and response to treatment.

4.
Neuro Oncol ; 25(1): 199-210, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604410

RESUMO

BACKGROUND: The incidence and biology of IDH1/2 mutations in pediatric gliomas are unclear. Notably, current treatment approaches by pediatric and adult providers vary significantly. We describe the frequency and clinical outcomes of IDH1/2-mutant gliomas in pediatrics. METHODS: We performed a multi-institutional analysis of the frequency of pediatric IDH1/2-mutant gliomas, identified by next-generation sequencing (NGS). In parallel, we retrospectively reviewed pediatric IDH1/2-mutant gliomas, analyzing clinico-genomic features, treatment approaches, and outcomes. RESULTS: Incidence: Among 851 patients with pediatric glioma who underwent NGS, we identified 78 with IDH1/2 mutations. Among patients 0-9 and 10-21 years old, 2/378 (0.5%) and 76/473 (16.1%) had IDH1/2-mutant tumors, respectively. Frequency of IDH mutations was similar between low-grade glioma (52/570, 9.1%) and high-grade glioma (25/277, 9.0%). Four tumors were graded as intermediate histologically, with one IDH1 mutation. Outcome: Seventy-six patients with IDH1/2-mutant glioma had outcome data available. Eighty-four percent of patients with low-grade glioma (LGG) were managed observantly without additional therapy. For low-grade astrocytoma, 5-year progression-free survival (PFS) was 42.9% (95%CI:20.3-63.8) and, despite excellent short-term overall survival (OS), numerous disease-related deaths after year 10 were reported. Patients with high-grade astrocytoma had a 5-year PFS/OS of 36.8% (95%CI:8.8-66.4) and 84% (95%CI:50.1-95.6), respectively. Patients with oligodendroglioma had excellent OS. CONCLUSIONS: A subset of pediatric gliomas is driven by IDH1/2 mutations, with a higher rate among adolescents. The majority of patients underwent upfront observant management without adjuvant therapy. Findings suggest that the natural history of pediatric IDH1/2-mutant glioma may be similar to that of adults, though additional studies are needed.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Adulto , Adolescente , Humanos , Criança , Estudos Retrospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Astrocitoma/genética , Mutação , Genômica , Isocitrato Desidrogenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA