Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(12): 364, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906317

RESUMO

Bacterial pigments represent a diverse group of secondary metabolites, which confer fitness advantages to the producers while residing in communities. The bioactive potential of such metabolites, including antimicrobial, anticancer, and immunomodulation, are being explored. Reckoning that a majority of such pigments are produced in response to quorum sensing (QS) mediated expression of biosynthetic gene clusters and, in turn, influence cell-cell communication, systemic profiling of the pigments for possible impact on QS appears crucial. A systemic screening of bacterial pigments for QS-inhibition combined with exploration of antibiofilm and antimicrobial action against Acinetobacter baumannii might offer viable alternatives to combat the priority pathogen. Major bacterial pigments are classified (clustered) based on their physicochemical properties, and representatives of the clusters are screened for QS inhibition. The screen highlighted prodigiosin as a potent quorum quencher, although its production from Serratia marcescens appeared to be QS-independent. In silico analysis indicated potential interactions between AbaI and AbaR, two major QS regulators in A. baumannii, and prodigiosin, which impaired biofilm formation, a major QS-dependent process in the bacteria. Prodigiosin augmented antibiotic action of ciprofloxacin against A. baumannii biofilms. Cell viability analysis revealed prodigiosin to be modestly cytotoxic against HEK293, a non-cancer human cell line. While developing dual-species biofilm, prodigiosin producer S. marcescens significantly impaired the fitness of A. baumannii. Enhanced susceptibility of A. baumannii toward colistin was also noted while growing in co-culture with S. marcescens. Antibiotic resistant isolates demonstrated varied responsiveness against prodigiosin, with two resistant strains demonstrating possible collateral sensitivity. Collectively, the results underpin the prospect of a prodigiosin-based therapeutic strategy in combating A. baumannii infection.


Assuntos
Acinetobacter baumannii , Percepção de Quorum , Humanos , Prodigiosina , Acinetobacter baumannii/metabolismo , Células HEK293 , Biofilmes , Serratia marcescens/metabolismo , Antibacterianos/metabolismo
2.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361504

RESUMO

Dry Eye Disease (DED) is a complex pathology affecting millions of people with significant impact on quality of life. Corneal inflammation, including via the nuclear factor kappa B (NFκB) pathway, plays a key etiological role in DED. Recombinant human proteoglycan 4 (rhPRG4) has been shown to be a clinically effective treatment for DED that has anti-inflammatory effects in corneal epithelial cells, but the underlying mechanism is still not understood. Our goal was to understand if rhPRG4 affects tumor necrosis factor α (TNFα)-stimulated inflammatory activity in corneal epithelial cells. We treated hTERT-immortalized corneal epithelial (hTCEpi) cells ± TNFα ± rhPRG4 and performed Western blotting on cell lysate and RNA sequencing. Bioinformatics analysis revealed that rhPRG4 had a significant effect on TNFα-mediated inflammation with potential effects on matricellular homeostasis. rhPRG4 reduced activation of key inflammatory pathways and decreased expression of transcripts for key inflammatory cytokines, interferons, interleukins, and transcription factors. TNFα treatment significantly increased phosphorylation and nuclear translocation of p65, and rhPRG4 significantly reduced both these effects. RNA sequencing identified human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10), a ubiquitin-like modifier protein which has not been studied in the context of DED, as a key pro-inflammatory transcript increased by TNFα and decreased by rhPRG4. These results were confirmed at the protein level. In summary, rhPRG4 is able to downregulate NFκB activity in hTCEpi cells, suggesting a potential biological mechanism by which it may act as a therapeutic for DED.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , NF-kappa B/metabolismo , Qualidade de Vida , Proteoglicanas/metabolismo , Células Epiteliais/metabolismo , Inflamação
3.
J Immunol ; 206(5): 923-929, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33380494

RESUMO

The Coronaviridae family includes the seven known human coronaviruses (CoV) that cause mild to moderate respiratory infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1) as well as severe illness and death (MERS-CoV, SARS-CoV, SARS-CoV-2). Severe infections induce hyperinflammatory responses that are often intensified by host adaptive immune pathways to profoundly advance disease severity. Proinflammatory responses are triggered by CoV entry mediated by host cell surface receptors. Interestingly, five of the seven strains use three cell surface metallopeptidases (CD13, CD26, and ACE2) as receptors, whereas the others employ O-acetylated-sialic acid (a key feature of metallopeptidases) for entry. Why CoV evolved to use peptidases as their receptors is unknown, but the peptidase activities of the receptors are dispensable, suggesting the virus uses/benefits from other functions of these molecules. Indeed, these receptors participate in the immune modulatory pathways that contribute to the pathological hyperinflammatory response. This review will focus on the role of CoV receptors in modulating immune responses.


Assuntos
Betacoronavirus/classificação , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Imunomodulação , Metaloproteases/imunologia , Receptores de Superfície Celular/imunologia , Receptores de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Betacoronavirus/metabolismo , Infecções por Coronavirus/virologia , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologia , Humanos , Imunidade , Interleucina-6/imunologia , Internalização do Vírus
4.
Mol Cell Oncol ; 6(6): e1648024, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692781

RESUMO

Membrane recycling is critical to numerous cell functions and its dysregulation contributes to cancer and metastasis. We established that activation of the transmembrane molecule aminopeptidase N (ANPEP, also known as CD13) tethers the IQ motif containing, guanosine triphosphate hydrolase activating protein 1 (IQGAP1) scaffolding protein at the plasma membrane, thus stimulating the recycling regulator ADP-ribosylation factor 6 (ARF6) to ensure proper recycling of ß1-integrin and other membrane components impacting cell attachment.

5.
Atherosclerosis ; 287: 70-80, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31229835

RESUMO

BACKGROUND AND AIMS: Atherosclerosis is an inflammatory cardiovascular disorder characterized by accumulation of lipid-loaded macrophages in the intima. Prolonged accumulation leads to apoptosis of macrophages and eventually to progression of lesion development. Prevention of macrophage accumulation within the intima has been shown to reduce lesion formation. Since CD13 mediates trafficking of macrophages to sites of injury and repair, we tested the role of CD13 in atherosclerosis. METHODS: CD13+/+Ldlr-/- and CD13-/-Ldlr-/- (low density lipoprotein receptor) mice were fed basal or high fat diet (HFD) for 9, 12 and 15 weeks. Mice were euthanized and aortic roots along with innominate arteries were analyzed for atherosclerotic lesions. Cellular mechanisms were determined in vitro using CD13+/+ and CD13-/- bone marrow derived macrophages (BMDMs) incubated with highly oxidized low-density lipoprotein (oxLDL). RESULTS: At the 9 and 12 week time points, no differences were observed in the average lesion size, but at the 15 week time point, CD13-/-Ldlr-/- mice had larger lesions with exaggerated necrotic areas. CD13+/+ and CD13-/- macrophages endocytosed similar amounts of oxLDL, but CD13-/- macrophages generated higher amounts of oxidative stressors in comparison to CD13+/+ macrophages. This increased oxidative stress was due to increased nitric oxide production in oxLDL treated CD13-/- macrophages. Accumulated oxidative stress subsequently led to accelerated apoptosis and enhanced necrosis of oxLDL treated CD13-/- macrophages. CONCLUSIONS: Contrary to our prediction, CD13 deficiency led to larger atherosclerotic lesions with increased areas of necrosis. Mechanistically, CD13 deficiency led to increased nitric oxide production and consequently, greater oxidative stress.


Assuntos
Aterosclerose/metabolismo , Antígenos CD13/deficiência , Macrófagos/metabolismo , Estresse Oxidativo , Animais , Apoptose , Aterosclerose/patologia , Antígenos CD13/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Sci Signal ; 12(579)2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040262

RESUMO

Cell attachment to the extracellular matrix (ECM) requires a balance between integrin internalization and recycling to the surface that is mediated by numerous proteins, emphasizing the complexity of these processes. Upon ligand binding in various cells, the ß1 integrin is internalized, traffics to early endosomes, and is returned to the plasma membrane through recycling endosomes. This trafficking process depends on the cyclical activation and inactivation of small guanosine triphosphatases (GTPases) by their specific guanine exchange factors (GEFs) and their GTPase-activating proteins (GAPs). In this study, we found that the cell surface antigen CD13, a multifunctional transmembrane molecule that regulates cell-cell adhesion and receptor-mediated endocytosis, also promoted cell migration and colocalized with ß1 integrin at sites of cell adhesion and at the leading edge. A lack of CD13 resulted in aberrant trafficking of internalized ß1 integrin to late endosomes and its ultimate degradation. Our data indicate that CD13 promoted ARF6 GTPase activity by positioning the ARF6-GEF EFA6 at the cell membrane. In migrating cells, a complex containing phosphorylated CD13, IQGAP1, GTP-bound (active) ARF6, and EFA6 at the leading edge promoted the ARF6 GTPase cycling and cell migration. Together, our findings uncover a role for CD13 in the fundamental cellular processes of receptor recycling, regulation of small GTPase activities, cell-ECM interactions, and cell migration.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Antígenos CD13/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Integrina beta1/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Fator 6 de Ribosilação do ADP , Animais , Antígenos CD13/genética , Adesão Celular , Linhagem Celular Tumoral , Endocitose , Endossomos/metabolismo , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Transporte Proteico
7.
PLoS One ; 13(3): e0194053, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29518138

RESUMO

Sphingosine Kinase-2 (Sphk2) is responsible for the production of the bioactive lipid Sphingosine-1 Phosphate, a key regulator of tissue repair. Here we address the in vivo significance of Sphingosine Kinase -2 in renal inflammation/fibrosis in response to unilateral ureteral obstruction using both genetic and pharmacological strategies. Obstructed kidneys of Sphk2-/- mice showed reduced renal damage and diminished levels of the renal injury markers TGFß1 and αSMA when compared to wild type controls. We found a consistently significant increase in anti-inflammatory (M2) macrophages in obstructed Sphk2-/- kidneys by flow cytometry and a decrease in mRNA levels of the inflammatory cytokines, MCP1, TNFα, CXCL1 and ILß1, suggesting an anti-inflammatory bias in the absence of Sphk2. Indeed, metabolic profiling showed that the pro-inflammatory glycolytic pathway is largely inactive in Sphk2-/- bone marrow-derived macrophages. Furthermore, treatment with the M2-promoting cytokines IL-4 or IL-13 demonstrated that macrophages lacking Sphk2 polarized more efficiently to the M2 phenotype than wild type cells. Bone marrow transplant studies indicated that expression of Sphk2-/- on either the hematopoietic or parenchymal cells did not fully rescue the pro-healing phenotype, confirming that both infiltrating M2-macrophages and the kidney microenvironment contribute to the damaging Sphk2 effects. Importantly, obstructed kidneys from mice treated with an Sphk2 inhibitor recapitulated findings in the genetic model. These results demonstrate that reducing Sphk2 activity by genetic or pharmacological manipulation markedly decreases inflammatory and fibrotic responses to obstruction, resulting in diminished renal injury and supporting Sphk2 as a novel driver of the pro-inflammatory macrophage phenotype.


Assuntos
Macrófagos/fisiologia , Nefrite Intersticial/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Actinas/biossíntese , Actinas/genética , Animais , Microambiente Celular , Citocinas/biossíntese , Citocinas/genética , Fibrose , Regulação da Expressão Gênica/imunologia , Glicólise , Rim/enzimologia , Rim/patologia , Lisofosfolipídeos/sangue , Lisofosfolipídeos/fisiologia , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrite Intersticial/etiologia , Nefrite Intersticial/imunologia , Nefrite Intersticial/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Isoformas de Proteínas/fisiologia , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Esfingosina/análogos & derivados , Esfingosina/sangue , Esfingosina/fisiologia , Fator de Crescimento Transformador beta1/biossíntese , Fator de Crescimento Transformador beta1/genética , Obstrução Ureteral/complicações
8.
Angiogenesis ; 19(4): 487-500, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27387982

RESUMO

Prostate-specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase expressed in a number of tissues. PSMA participates in various biological functions depending on the substrate available in the particular tissue; in the brain, PSMA cleaves the abundant neuropeptide N-acetyl-aspartyl-glutamate to regulate release of key neurotransmitters, while intestinal PSMA cleaves polyglutamated peptides to supply dietary folate. PSMA expression is also progressively upregulated in prostate cancer where it correlates with tumor progression as well as in tumor vasculature, where it regulates angiogenesis. The previous research determined that PSMA cleavage of small peptides generated via matrix metalloprotease-mediated proteolysis of the extracellular matrix protein laminin potently activated endothelial cells, integrin signaling and angiogenesis, although the specific peptide substrates were not identified. Herein, using enzymatic analyses and LC/MS, we unequivocally demonstrate that several laminin-derived peptides containing carboxy-terminal glutamate moieties (LQE, IEE, LNE) are bona fide substrates for PSMA. Subsequently, the peptide products were tested for their effects on angiogenesis in various models. We report that LQ, the dipeptide product of PSMA cleavage of LQE, efficiently activates endothelial cells in vitro and enhances angiogenesis in vivo. Importantly, LQE is not cleaved by an inactive PSMA enzyme containing an active site mutation (E424S). Endothelial cell activation by LQ was dependent on integrin beta-1-induced activation of focal adhesion kinase. These results characterize a novel PSMA substrate, provide a functional rationale for the upregulation of PSMA in cancer cells and tumor vasculature and suggest that inhibition of PSMA could lead to the development of new angiogenic therapies.


Assuntos
Proteínas Angiogênicas/metabolismo , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Laminina/metabolismo , Antígenos de Superfície/genética , Adesão Celular , Dipeptídeos/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Glutamato Carboxipeptidase II/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrólise , Integrina beta1/metabolismo , Masculino , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neovascularização Fisiológica , Fragmentos de Peptídeos/metabolismo , Proteólise , Especificidade por Substrato
9.
World J Hepatol ; 7(23): 2482-91, 2015 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-26483870

RESUMO

AIM: To review published methods for detection of hepatitis B virus (HBV) infection. METHODS: A thorough search on Medline database was conducted to find original articles describing different methods or techniques of detection of HBV, which are published in English in last 10 years. Articles outlining methods of detection of mutants or drug resistance were excluded. Full texts and abstracts (if full text not available) were reviewed thoroughly. Manual search of references of retrieved articles were also done. We extracted data on different samples and techniques of detection of HBV, their sensitivity (Sn), specificity (Sp) and applicability. RESULTS: A total of 72 studies were reviewed. HBV was detected from dried blood/plasma spots, hepatocytes, ovarian tissue, cerumen, saliva, parotid tissue, renal tissue, oocytes and embryos, cholangiocarcinoma tissue, etc. Sensitivity of dried blood spot for detecting HBV was > 90% in all the studies. In case of seronegative patients, HBV DNA or serological markers have been detected from hepatocytes or renal tissue in many instances. Enzyme linked immunosorbent assay and Chemiluminescent immunoassay (CLIA) are most commonly used serological tests for detection. CLIA systems are also used for quantitation. Molecular techniques are used qualitatively as well as for quantitative detection. Among the molecular techniques version 2.0 of the CobasAmpliprep/CobasTaqMan assay and Abbott's real time polymerase chain reaction kit were found to be most sensitive with a lower detection limit of only 6.25 IU/mL and 1.48 IU/mL respectively. CONCLUSION: Serological and molecular assays are predominant and reliable methods for HBV detection. Automated systems are highly sensitive and quantify HBV DNA and serological markers for monitoring.

10.
J Immunol ; 194(9): 4466-76, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25801433

RESUMO

Dysregulation of the innate immune response underlies numerous pathological conditions. The TLR4 is the prototypical sensor of infection or injury that orchestrates the innate response via sequential activation of both cell surface and endocytic signaling pathways that trigger distinct downstream consequences. CD14 binds and delivers LPS to TLR4 and has been identified as a positive regulator of TLR4 signal transduction. It is logical that negative regulators of this process also exist to maintain the critical balance required for fighting infection, healing damaged tissue, and resolving inflammation. We showed that CD13 negatively modulates receptor-mediated Ag uptake in dendritic cells to control T cell activation in adaptive immunity. In this study, we report that myeloid CD13 governs internalization of TLR4 and subsequent innate signaling cascades, activating IRF-3 independently of CD14. CD13 is cointernalized with TLR4, CD14, and dynamin into Rab5(+) early endosomes upon LPS treatment. Importantly, in response to TLR4 ligands HMGB1 and LPS, p-IRF-3 activation and transcription of its target genes are enhanced in CD13(KO) dendritic cells, whereas TLR4 surface signaling remains unaffected, resulting in a skewed inflammatory response. This finding is physiologically relevant as ischemic injury in vivo provoked identical TLR4 responses. Finally, CD13(KO) mice showed significantly enhanced IFNß-mediated signal transduction via JAK-STAT, escalating inducible NO synthase transcription levels and promoting accumulation of oxidative stress mediators and tissue injury. Mechanistically, inflammatory activation of macrophages upregulates CD13 expression and CD13 and TLR4 coimmunoprecipitate. Therefore, CD13 negatively regulates TLR4 signaling, thereby balancing the innate response by maintaining the inflammatory equilibrium critical to innate immune regulation.


Assuntos
Antígenos CD13/metabolismo , Endocitose , Inflamação/imunologia , Inflamação/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Antígenos CD13/genética , Membrana Celular/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Endossomos/metabolismo , Expressão Gênica , Inflamação/genética , Fator Regulador 3 de Interferon/metabolismo , Isquemia/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Nitritos/metabolismo , Ligação Proteica , Transporte Proteico , Baço/imunologia , Baço/metabolismo
11.
Front Physiol ; 4: 402, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24409152

RESUMO

Mesenchymal stem cells (MSCs) are multipotent, tissue-resident cells that can facilitate tissue regeneration and thus, show great promise as potential therapeutic agents. Functional MSCs have been isolated and characterized from a wide array of adult tissues and are universally identified by the shared expression of a core panel of MSCs markers. One of these markers is the multifunctional cell surface peptidase CD13 that has been shown to be expressed on human and murine MSCs from many tissues. To investigate whether this universal expression indicates a functional role for CD13 in MSC biology we isolated, expanded and characterized MSCs from bone marrow of wild type (WT) and CD13(KO) mice. Characterization of these cells demonstrated that both WT and CD13(KO) MSCs expressed the full complement of MSC markers (CD29, CD44, CD49e, CD105, Sca1), showed comparable proliferation rates and were capable of differentiating toward the adipogenic and osteogenic lineages. However, MSCs lacking CD13 were unable to differentiate into vascular cells, consistent with our previous characterization of CD13 as an angiogenic regulator. Compared to WT MSCs, adhesion and migration on various extracellular matrices of CD13(KO) MSCs were significantly impaired, which correlated with decreased phospho-FAK levels and cytoskeletal alterations. Crosslinking human MSCs with activating CD13 antibodies increased cell adhesion to endothelial monolayers and induced FAK activation in a time dependent manner. In agreement with these in vitro data, intramuscular injection of CD13(KO) MSCs in a model of severe ischemic limb injury resulted in significantly poorer perfusion, decreased ambulation, increased necrosis and impaired vascularization compared to those receiving WT MSCs. This study suggests that CD13 regulates FAK activation to promote MSC adhesion and migration, thus, contributing to MSC-mediated tissue repair. CD13 may present a viable target to enhance the efficacy of mesenchymal stem cell therapies.

12.
Stem Cells ; 32(6): 1564-77, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24307555

RESUMO

CD13 is a multifunctional cell surface molecule that regulates inflammatory and angiogenic mechanisms in vitro, but its contribution to these processes in vivo or potential roles in stem cell biology remains unexplored. We investigated the impact of loss of CD13 on a model of ischemic skeletal muscle injury that involves angiogenesis, inflammation, and stem cell mobilization. Consistent with its role as an inflammatory adhesion molecule, lack of CD13 altered myeloid trafficking in the injured muscle, resulting in cytokine profiles skewed toward a prohealing environment. Despite this healing-favorable context, CD13(KO) animals showed significantly impaired limb perfusion with increased necrosis, fibrosis, and lipid accumulation. Capillary density was correspondingly decreased, implicating CD13 in skeletal muscle angiogenesis. The number of CD45-/Sca1-/α7-integrin+/ß1-integrin+ satellite cells was markedly diminished in injured CD13(KO) muscles and adhesion of isolated CD13(KO) satellite cells was impaired while their differentiation was accelerated. Bone marrow transplantation studies showed contributions from both host and donor cells to wound healing. Importantly, CD13 was coexpressed with Pax7 on isolated muscle-resident satellite cells. Finally, phosphorylated-focal adhesion kinase and ERK levels were reduced in injured CD13(KO) muscles, consistent with CD13 regulating satellite cell adhesion, potentially contributing to the maintenance and renewal of the satellite stem cell pool and facilitating skeletal muscle regeneration.


Assuntos
Antígenos CD13/metabolismo , Diferenciação Celular , Isquemia/metabolismo , Isquemia/patologia , Células Satélites de Músculo Esquelético/patologia , Células-Tronco/patologia , Animais , Arteriopatias Oclusivas/metabolismo , Arteriopatias Oclusivas/patologia , Arteriopatias Oclusivas/fisiopatologia , Artérias/metabolismo , Artérias/patologia , Adesão Celular , Contagem de Células , Citocinas/metabolismo , Inflamação/patologia , Isquemia/fisiopatologia , Camundongos , Camundongos Knockout , Neovascularização Fisiológica , Recuperação de Função Fisiológica , Regeneração , Transdução de Sinais , Células-Tronco/metabolismo , Cicatrização
13.
J Biol Chem ; 288(7): 4908-21, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23223443

RESUMO

HuR, also known as Elavl1, is an RNA-binding protein that regulates embryonic development, progenitor cell survival, and cell stress responses. The role of HuR in angiogenesis is not known. Using a myeloid-specific HuR knock-out mouse model (Elavl1Mø KO), we show that HuR expression in bone marrow-derived macrophages (BMDMs) is needed to maintain the expression of genes enriched in AU-rich elements and U-rich elements in the 3'-UTR. In addition, BMDMs from Elavl1Mø KO mice also showed alterations in expression of several miRNAs. Interestingly, computational analysis suggested that miR-200b, which is up-regulated in Elavl1Mø KO BMDMs, interacts with myeloid mRNAs very close to the HuR binding sites, suggesting competitive regulation of gene expression. One such mRNA encodes vascular endothelial growth factor (VEGF)-A, a major regulator of angiogenesis. Immunoprecipitation of RNA-protein complexes and luciferase reporter assays indicate that HuR antagonizes the suppressive activity of miR-200b, down-regulates miR-200b expression, and promotes VEGF-A expression. Indeed, Vegf-a and other angiogenic regulatory transcripts were down-regulated in Elavl1Mø KO BMDMs. Interestingly, tumor growth, angiogenesis, vascular sprouting, branching, and permeability were significantly attenuated in Elavl1Mø KO mice, suggesting that HuR-regulated myeloid-derived factors modulate tumor angiogenesis in trans. Zebrafish embryos injected with an elavl1 morpholino oligomer or miR-200b mimic showed angiogenesis defects in the subintestinal vein plexus, and elavl1 mRNA rescued the repressive effect of miR-200b. In addition, miR-200b and HuR morpholino oligomer suppressed the activity of a zVEGF 3'-UTR luciferase reporter construct. Together, these studies reveal an evolutionarily conserved post-transcriptional mechanism involving competitive interactions between HuR and miR-200b that controls angiogenesis.


Assuntos
Proteínas ELAV/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Regiões 3' não Traduzidas , Sequência de Aminoácidos , Animais , Antígeno CD11b/biossíntese , Ensaio de Imunoadsorção Enzimática/métodos , Deleção de Genes , Células HEK293 , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Dados de Sequência Molecular , Peixe-Zebra
14.
J Immunol ; 188(11): 5489-99, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22544935

RESUMO

Dendritic cell (DC) Ag cross-presentation is generally associated with immune responses to tumors and viral Ags, and enhancement of this process is a focus of tumor vaccine design. In this study, we found that the myeloid cell surface peptidase CD13 is highly and specifically expressed on the subset of DCs responsible for cross-presentation, the CD8(+) murine splenic DCs. In vivo studies indicated that lack of CD13 significantly enhanced T cell responses to soluble OVA Ag, although development, maturation, and Ag processing and presentation of DCs are normal in CD13KO mice. In vitro studies showed that CD13 regulates receptor-mediated, dynamin-dependent endocytosis of Ags such as OVA and transferrin but not fluid-phase or phagocytic Ag uptake. CD13 and Ag are cointernalized in DCs, but CD13 did not coimmunoprecipitate with Ag receptors, suggesting that CD13 does not control internalization of specific receptors but regulates endocytosis at a more universal level. Mechanistically, we found that phosphorylation of the endocytic regulators p38MAPK and Akt was dysregulated in CD13KO DCs, and blocking of these kinases perturbed CD13-dependent endocytic uptake. Therefore, CD13 is a novel endocytic regulator that may be exploited to enhance Ag uptake and T cell activation to improve the efficacy of tumor-targeted vaccines.


Assuntos
Antígenos/metabolismo , Antígenos CD13/fisiologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Regulação para Baixo/imunologia , Tolerância Imunológica , Subpopulações de Linfócitos T/imunologia , Animais , Antígenos CD13/biossíntese , Antígenos CD13/genética , Antígenos CD8/biossíntese , Apresentação Cruzada/genética , Células Dendríticas/metabolismo , Humanos , Tolerância Imunológica/genética , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/fisiologia , Receptor de Manose , Lectinas de Ligação a Manose/antagonistas & inibidores , Lectinas de Ligação a Manose/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/fisiologia , Subpopulações de Linfócitos T/metabolismo
15.
Bio Protoc ; 2(24): e305, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27030824

RESUMO

Antigen cross presentation is important for effective immune responses to tumors and viral infections. Dendritic cells are professional antigen presenting cells and are unique in their ability to cross-present exogenous antigens on MHC class I molecules and activate antigen specific cytotoxic T cells. This protocol describes antigen cross presentation by dendritic cells (DCs) (bone marrow derived DCs and splenic DCs) in an in vitro and in an in vivo assay system using soluble ovalbumin protein.

16.
J Clin Invest ; 119(12): 3530-43, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19884656

RESUMO

The RNA-binding protein HuR (also known as ELAV1) binds to the 3'-untranslated region of mRNAs and regulates transcript stability and translation. However, the in vivo functions of HuR are not well understood. Here, we report that murine HuR is essential for life; postnatal global deletion of Elavl1 induced atrophy of hematopoietic organs, extensive loss of intestinal villi, obstructive enterocolitis, and lethality within 10 days. Upon Elavl1 deletion, progenitor cells in the BM, thymus, and intestine underwent apoptosis, whereas quiescent stem cells and differentiated cells were unaffected. The survival defect of hematopoietic progenitor cells was cell intrinsic, as transplant of Elavl1-/- BM led to compromised hematopoietic reconstitution but did not cause lethality. Expression of p53 and its downstream effectors critical for cell death were induced in progenitor cells as HuR levels declined. In mouse embryonic fibroblasts, HuR bound to and stabilized the mRNA for Mdm2, a critical negative regulator of p53. Furthermore, cell survival was restored by expression of Mdm2 in Elavl1-/- cells, suggesting that HuR keeps p53 levels in check in progenitor cells and thereby promotes cell survival. This regulation of cell stress response by HuR in progenitor cells, which we believe to be novel, could potentially be exploited in cytotoxic anticancer therapies as well as stem cell transplant therapy.


Assuntos
Antígenos de Superfície/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Antígenos de Superfície/genética , Apoptose , Diferenciação Celular , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Feminino , Trato Gastrointestinal/citologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Deleção de Genes , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Tolerância a Radiação , Tamoxifeno/toxicidade , Quimeras de Transplante , Proteína Supressora de Tumor p53/metabolismo
17.
Prostaglandins Other Lipid Mediat ; 88(3-4): 97-100, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19101649

RESUMO

Cyclooxygenase-2 (COX-2), overexpressed in inflammatory conditions and cancer, regulates angiogenesis and tumorigenesis via the production of biologically active prostanoids. Previously, we showed that COX-2 over-expression in the mammary gland of transgenic mice induces an angiogenic switch and transforms the mammary epithelium into invasive mammary carcinoma. Since COX-2-derived prostanoids can activate the nuclear receptor PPARdelta, we crossed Ppardelta(-/-) mice with COX-2 transgenic mice in the FVB/N background. PPARdelta was expressed constitutively in the mammary gland of virgin, pregnant and lactating mice. Mammary hyperplasia and tumorigenesis in the COX-2 transgenic mice was markedly reduced in the Ppardelta(-/-) mice compared to their wild type counterparts. Analysis of the mammary tissues indicated that immunoreactive Ki-67, cyclin D1 and phosphorylated histone 3 (Phospho H3) were reduced in Ppardelta(-/-) mice, suggesting that PPARdelta activation regulates cell proliferation in the mammary gland. We postulate that activation of the nuclear receptor PPARdelta by COX-2-derived prostanoids may be involved in the proliferation of mammary epithelial cells and therefore contribute to mammary cancer development.


Assuntos
Ciclo-Oxigenase 2/fisiologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , PPAR delta/fisiologia , Animais , Proliferação de Células , Ciclina D1/metabolismo , Ciclo-Oxigenase 2/genética , Feminino , Histonas/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Antígeno Ki-67/metabolismo , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Transgênicos , PPAR delta/genética , Gravidez , Prostaglandinas/metabolismo , Prostaglandinas/fisiologia
18.
J Exp Med ; 204(9): 2053-61, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-17724132

RESUMO

Although cyclooxygenase (COX)-2 inhibitors (coxibs) are effective in controlling inflammation, pain, and tumorigenesis, their use is limited by the recent revelation of increased adverse cardiovascular events. The mechanistic basis of this side effect is not well understood. We show that the metabolism of endocannabinoids by the endothelial cell COX-2 coupled to the prostacyclin (PGI(2)) synthase (PGIS) activates the nuclear receptor peroxisomal proliferator-activated receptor (PPAR) delta, which negatively regulates the expression of tissue factor (TF), the primary initiator of blood coagulation. Coxibs suppress PPARdelta activity and induce TF expression in vascular endothelium and elevate circulating TF activity in vivo. Importantly, PPARdelta agonists suppress coxib-induced TF expression and decrease circulating TF activity. We provide evidence that COX-2-dependent attenuation of TF expression is abrogated by coxibs, which may explain the prothrombotic side-effects for this class of drugs. Furthermore, PPARdelta agonists may be used therapeutically to suppress coxib-induced cardiovascular side effects.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Ciclo-Oxigenase 2/metabolismo , Endocanabinoides , PPAR delta/metabolismo , Tromboplastina/genética , Animais , Celecoxib , Inibidores de Ciclo-Oxigenase 2/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Células HCT116 , Humanos , Camundongos , PPAR delta/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA