Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Ann Work Expo Health ; 68(6): 562-580, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38815981

RESUMO

OBJECTIVE: Within the scope of the Exposome Project for Health and Occupational Research on applying the exposome concept to working life health, we aimed to provide a broad overview of the status of knowledge on occupational exposures and associated health effects across multiple noncommunicable diseases (NCDs) to help inform research priorities. METHODS: We conducted a narrative review of occupational risk factors that can be considered to have "consistent evidence for an association," or where there is "limited/inadequate evidence for an association" for 6 NCD groups: nonmalignant respiratory diseases; neurodegenerative diseases; cardiovascular/metabolic diseases; mental disorders; musculoskeletal diseases; and cancer. The assessment was done in expert sessions, primarily based on systematic reviews, supplemented with narrative reviews, reports, and original studies. Subsequently, knowledge gaps were identified, e.g. based on missing information on exposure-response relationships, gender differences, critical time-windows, interactions, and inadequate study quality. RESULTS: We identified over 200 occupational exposures with consistent or limited/inadequate evidence for associations with one or more of 60+ NCDs. Various exposures were identified as possible risk factors for multiple outcomes. Examples are diesel engine exhaust and cadmium, with consistent evidence for lung cancer, but limited/inadequate evidence for other cancer sites, respiratory, neurodegenerative, and cardiovascular diseases. Other examples are physically heavy work, shift work, and decision latitude/job control. For associations with limited/inadequate evidence, new studies are needed to confirm the association. For risk factors with consistent evidence, improvements in study design, exposure assessment, and case definition could lead to a better understanding of the association and help inform health-based threshold levels. CONCLUSIONS: By providing an overview of knowledge gaps in the associations between occupational exposures and their health effects, our narrative review will help setting priorities in occupational health research. Future epidemiological studies should prioritize to include large sample sizes, assess exposures prior to disease onset, and quantify exposures. Potential sources of biases and confounding need to be identified and accounted for in both original studies and systematic reviews.


Assuntos
Neoplasias , Doenças não Transmissíveis , Exposição Ocupacional , Humanos , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/estatística & dados numéricos , Exposição Ocupacional/análise , Doenças não Transmissíveis/epidemiologia , Neoplasias/epidemiologia , Neoplasias/etiologia , Fatores de Risco , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/epidemiologia , Doenças Musculoesqueléticas/etiologia , Doenças Musculoesqueléticas/epidemiologia , Doenças Profissionais/epidemiologia , Doenças Profissionais/etiologia , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/epidemiologia , Doenças Respiratórias/epidemiologia , Doenças Respiratórias/etiologia , Expossoma , Transtornos Mentais/epidemiologia , Transtornos Mentais/etiologia
2.
Part Fibre Toxicol ; 21(1): 8, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409078

RESUMO

BACKGROUND: Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory and systemic health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of occupational-level silica and ambient-level DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization. RESULTS: The findings highlight the distinct effects of silica and diesel exhaust particles (DEP) on lung injury, inflammation, and autoantibody formation in C57BL/6J and NOD/ShiLtJ mice. Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside mild fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Moreover, antinuclear antibodies correlated with extent of lung inflammation in NOD/ShiLTJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. However, aside from contributing to airway hyperreactivity specifically in NOD/ShiLtJ mice, the ambient-level DEP did not significantly amplify the effects induced by silica. There was no evidence of synergistic or additive interaction between these specific doses of silica and DEP in inducing lung damage or inflammation in either of the mouse strains. CONCLUSION: Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of ambient-level DEP on these silica-induced effects was minimal.


Assuntos
Asma , Lesão Pulmonar , Camundongos , Animais , Emissões de Veículos/toxicidade , Lesão Pulmonar/patologia , Dióxido de Silício/toxicidade , Autoanticorpos/farmacologia , Anticorpos Antinucleares/farmacologia , Microtomografia por Raio-X , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL , Pulmão , Citocinas/genética , Líquido da Lavagem Broncoalveolar , Inflamação/patologia , Material Particulado/toxicidade
3.
Arch Toxicol ; 98(2): 493-505, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38148415

RESUMO

The use of laboratory animals in research has been extensively criticized. While most of the critique has been centered around the ethical aspect, also the economic and scientific aspects have been frequently mentioned as points of concern. As a result, the use of alternative methods has gradually become more enticing. The most used alternatives to laboratory animals are the 2D monolayer cell cultures. However, the limited translatability of these monolayer cell cultures to in vivo has led to the development of 3D cell cultures that are believed to better capture the in vivo physiology and pathology. Here we report on the development of a physiologically more relevant 3D cell model (spheroids) comprised of human bronchial epithelial (16HBE14o-) cells, for use in respiratory toxicity research. Culturing 16HBE14o-cells as hanging-drops led to the formation of stable spheroids which showed an increased expression of CLDN1 when compared to 2D monolayer cultured cells. In addition, cell-cycle analysis revealed an increased sub-G0 population and signs of G0/G1 arrest in spheroids. Afterwards, standard operating procedures (SOPs) were established, and existing protocols optimized, for compatibility with spheroids. Spheroids were successfully used to assess cytotoxicity, genotoxicity, apoptosis/necrosis, and oxidative stress after exposure to known cytotoxic or genotoxic compounds. The development of the bronchial epithelial spheroids and the establishment of SOPs can contribute to a more reliable toxicity assessment of chemicals and may aid in bridging the gap between in vivo and in vitro experiments.


Assuntos
Antineoplásicos , Esferoides Celulares , Animais , Humanos , Células Cultivadas , Técnicas de Cultura de Células/métodos
4.
Res Sq ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37886437

RESUMO

Background: Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of silica and DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization. Results: Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside limited fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. Conclusion: Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of diesel exhaust particles on these silica-induced effects was minimal.

5.
Regul Toxicol Pharmacol ; 144: 105488, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657743

RESUMO

Electronic cigarette is often promoted and perceived as an 'healthy' alternative compared to conventional cigarettes. However, growing body of evidence indicate the possible adverse health effect associated with e-cigarette. Here we reviewed the literature with a focus on metal exposure in relation to e-cigarette use and related toxicity endpoints. Twenty-nine studies were identified for full text screening after applying the screening criteria of which 5 in vitro studies and 11 epidemiological studies were included for data extraction. Cr, Cu, Ni, Sn are the most found metal in all studies. In vitro, metal from e-cigarette (liquid or aerosols) induced cytotoxicity, oxidative stress, genotoxicity and pro-inflammatory responses. It was observed that the presence of nicotine can influence metal-induced in vitro toxicity. Based on epidemiological studies, the metal burden in e-cigarette users showed to be elevated in different populations (including e.g. NHANES). However, most often such studies were limited by the missing user characteristics, and information of other potential sources of metal exposure. In general, metals from e-cigarette use can be associated with toxicity endpoints but to uncover the metal related hazard of e-cigarette in users, more detailed data on metals in vapors and e-liquids; user habits and user demographics are needed.

6.
ERJ Open Res ; 9(2)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37077547

RESUMO

In this article, early career members of the Epidemiology and Environment Assembly of the European Respiratory Society summarise a selection of five sessions from the Society's 2022 International Congress, with a focus on areas of specific interest for the Assembly, i.e. epidemiology and risk factors of respiratory diseases in both children and adults. Topics covered include the characterisation of obstructive respiratory diseases, their comorbidities and their evolution, with novel insight from large cohorts. The importance of early-life factors in respiratory health was also emphasised, including maternal exposures and habits during pregnancy. As smoking behaviours have changed following the introduction of e-cigarettes and heated tobacco products, research remains very active to determine the health consequences and predictors of these novel uses, especially in teenagers. The impact of environmental and occupational exposures on respiratory health remained a major topic of the congress, with a focus on emerging risk factors such as landscape fire smoke, non-exhaust particles and nanoparticles. Regarding workplace exposures, old and novel causes of occupational asthma and rhinitis were discussed.

7.
Arch Toxicol ; 97(6): 1453-1517, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37099053

RESUMO

With increasing numbers of cancer cases, the use of antineoplastic agents is expected to rise. This will be accompanied by an increase in occupational exposure, which can cause unwanted health effects in workers. Our aim was to give an overview of genotoxic and epigenetic effects after occupational exposure to antineoplastic agents and to assess the concentration-effect relation. Four databases were searched for papers investigating genotoxic and/or epigenetic effects of occupational exposure to antineoplastic agents. Out of the 245 retrieved papers, 62 were included in this review. In this systematic literature review, we confirmed that exposure of healthcare workers to antineoplastic agents can lead to genotoxic damage. However, we observed a lack of data on exposure as well as genotoxic and epigenetic effects in workers other than healthcare workers. Furthermore, gaps in the current knowledge regarding the potential epigenetic effects caused by antineoplastic drug exposure and regarding the link between internal antineoplastic drug concentration and genotoxic and epigenetic effects after occupational exposure to antineoplastic agents were identified, offering a first step for future research.


Assuntos
Antineoplásicos , Exposição Ocupacional , Humanos , Antineoplásicos/toxicidade , Exposição Ocupacional/efeitos adversos , Dano ao DNA
8.
Front Public Health ; 11: 1073658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891347

RESUMO

Introduction: Epigenetic marks have been proposed as early changes, at the subcellular level, in disease development. To find more specific biomarkers of effect in occupational exposures to toxicants, DNA methylation studies in peripheral blood cells have been performed. The goal of this review is to summarize and contrast findings about DNA methylation in blood cells from workers exposed to toxicants. Methods: A literature search was performed using PubMed and Web of Science. After first screening, we discarded all studies performed in vitro and in experimental animals, as well as those performed in other cell types other than peripheral blood cells. Results: 116 original research papers met the established criteria, published from 2007 to 2022. The most frequent investigated exposures/labor group were for benzene (18.9%) polycyclic aromatic hydrocarbons (15.5%), particulate matter (10.3%), lead (8.6%), pesticides (7.7%), radiation (4.3%), volatile organic compound mixtures (4.3%), welding fumes (3.4%) chromium (2.5%), toluene (2.5%), firefighters (2.5%), coal (1.7%), hairdressers (1.7%), nanoparticles (1.7%), vinyl chloride (1.7%), and others. Few longitudinal studies have been performed, as well as few of them have explored mitochondrial DNA methylation. Methylation platforms have evolved from analysis in repetitive elements (global methylation), gene-specific promoter methylation, to epigenome-wide studies. The most reported observations were global hypomethylation as well as promoter hypermethylation in exposed groups compared to controls, while methylation at DNA repair/oncogenes genes were the most studied; studies from genome-wide studies detect differentially methylated regions, which could be either hypo or hypermethylated. Discussion: Some evidence from longitudinal studies suggest that modifications observed in cross-sectional designs may be transitory; then, we cannot say that DNA methylation changes are predictive of disease development due to those exposures. Conclusion: Due to the heterogeneity in the genes studied, and scarcity of longitudinal studies, we are far away from considering DNA methylation changes as biomarkers of effect in occupational exposures, and nor can we establish a clear functional or pathological correlate for those epigenetic modifications associated with the studied exposures.


Assuntos
Metilação de DNA , Epigênese Genética , Estudos Transversais , Biomarcadores , Células Sanguíneas
9.
Environ Toxicol Pharmacol ; 97: 104036, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36503061

RESUMO

Since antineoplastic agents are frequently used in cancer therapy and able to affect the patient's DNA, it is important to know the genotoxic consequences on non-cancerous tissue. Therefore, we aimed to characterize the genotoxic profile of antineoplastic drugs belonging to different classes, using the cytokinesis-block micronucleus cytome assay in a human monocytic cell line (THP-1). All tested antineoplastic agents resulted in increased micronucleus formation. Exposure to anthracyclines led to an increased number of vacuolated cells and cell death, while for mitotic spindle inhibitors, (different stages of) cell death and an increased nuclear bud formation was observed. Alkylating agents induce a high proportion of vacuolated cells and increased nuclear bud formation. No striking differences of nuclear division index or nucleoplasmic bridge formation were observed between exposed and non-exposed cells. The here presented class-specific aberrations may facilitate interpretation of genotoxic aberrations when evaluating clinical samples from patients treated with these antineoplastic agents.


Assuntos
Antineoplásicos , Citocinese , Humanos , Testes para Micronúcleos/métodos , Núcleo Celular , Antineoplásicos/farmacologia , Dano ao DNA , Linfócitos/metabolismo
10.
J Transl Med ; 20(1): 487, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284330

RESUMO

BACKGROUND: Catechol-O-methyltransferase (COMT) has been shown to influence clinical pain, descending modulation, and exercise-induced symptom worsening. COMT regulates nociceptive processing and inflammation, key pathophysiological features of Chronic Fatigue Syndrome and Fibromyalgia (CFS/FM). We aimed to determine the interactions between genetic and epigenetic mechanisms regulating COMT and its influence on inflammatory markers and symptoms in patients with CFS/FM. METHODS: A case-control study with repeated-measures design was used to reduce the chance of false positive and increase the power of our findings. Fifty-four participants (28 patients with CFS/FM and 26 controls) were assessed twice within 4 days. The assessment included clinical questionnaires, neurophysiological assessment (pain thresholds, temporal summation, and conditioned pain modulation), and blood withdrawal in order to assess rs4818, rs4633, and rs4680 COMT polymorphisms and perform haplotype estimation, DNA methylation in the COMT gene (both MB-COMT and S-COMT promoters), and cytokine expression (TNF-α, IFN-γ, IL-6, and TGF-ß). RESULTS: COMT haplotypes were associated with DNA methylation in the S-COMT promoter, TGF-ß expression, and symptoms. However, this was not specific for one condition. Significant between-group differences were found for increased DNA methylation in the MB-COMT promoter and decreased IFN-γ expression in patients. DISCUSSION: Our results are consistent with basic and clinical research, providing interesting insights into genetic-epigenetic regulatory mechanisms. MB-COMT DNA methylation might be an independent factor contributing to the pathophysiology of CFS/FM. Further research on DNA methylation in complex conditions such as CFS/FM is warranted. We recommend future research to employ a repeated-measure design to control for biomarkers variability and within-subject changes.


Assuntos
Síndrome de Fadiga Crônica , Fibromialgia , Humanos , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Fibromialgia/genética , Síndrome de Fadiga Crônica/genética , Estudos de Casos e Controles , Epigênese Genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Dor/genética , Inflamação/genética , Fator de Crescimento Transformador beta/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-35752139

RESUMO

BACKGROUND: Many guidelines and safety measures led to a decrease in exposure to antineoplastic agents. Since healthcare workers are often exposed to lower concentrations than patients, a sensitive method is needed to quantify occupational exposure. OBJECTIVE: The aim of this study was to develop and validate a sensitive method for simultaneous detection and quantification of cyclophosphamide, ifosfamide and paclitaxel in urine by use of UPLC-MS/MS with a UniSpray ionisation source. METHODS: Compounds were extracted from urine using Novum simplified liquid extraction cartridges, separated on a C18 column, ionised by a UniSpray ionisation source and detected with MS/MS. In the second part of the study, a field study was performed to assess occupational exposure to antineoplastic agents. RESULTS: Eighty-three samples from healthcare workers were analysed and resulted in seventeen samples containing quantifiable concentrations of at least one compound. In conclusion, a sensitive method for simultaneous detection and quantification of cyclophosphamide (LLOQ 0.05 ng/mL), ifosfamide (LLOQ 0.3 ng/mL) and paclitaxel (LLOQ 0.7 ng/mL) was developed and validated.


Assuntos
Antineoplásicos , Espectrometria de Massas em Tandem , Antineoplásicos/urina , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Ciclofosfamida , Humanos , Ifosfamida/urina , Paclitaxel , Espectrometria de Massas em Tandem/métodos
12.
Adv Exp Med Biol ; 1357: 195-223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583646

RESUMO

The toxic effects of different forms of nanomaterials comprise a series of biological effects such as oxidative stress; DNA damage; inflammatory response; activation of nuclear transcription factors. Some of these are key characteristics of human carcinogens and have been considered for hazard identification of nanomaterials. In addition, epigenetic changes also play a key role in the multi-step sequential process of carcinogenesis. Epigenetic modifications may constitute changes in DNA methylation, histone modifications (methylation, acetylation etc), and changes in non-coding RNA, leading to an altered gene expression profile. In this chapter, we describe the state-of-the-art of epigenetic modifications induced by different nanomaterials, from a limited number of in vitro- in vivo and human studies, a majority of which is primarily focused on DNA methylation. We also highlight the potential challenges and future directions in the field of epigenetics research in nanomaterial toxicology.


Assuntos
Histonas , Nanoestruturas , Metilação de DNA , Epigênese Genética , Epigenômica , Histonas/genética , Histonas/metabolismo , Humanos , Nanoestruturas/toxicidade
13.
Antioxidants (Basel) ; 9(11)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238564

RESUMO

Oxidative stress can be induced by various stimuli and altered in certain conditions, including exercise and pain. Although many studies have investigated oxidative stress in relation to either exercise or pain, the literature presents conflicting results. Therefore, this review critically discusses existing literature about this topic, aiming to provide a clear overview of known interactions between oxidative stress, exercise, and pain in healthy people as well as in people with chronic pain, and to highlight possible confounding factors to keep in mind when reflecting on these interactions. In addition, autonomic regulation and epigenetic mechanisms are proposed as potential mechanisms of action underlying the interplay between oxidative stress, exercise, and pain. This review highlights that the relation between oxidative stress, exercise, and pain is poorly understood and not straightforward, as it is dependent on the characteristics of exercise, but also on which population is investigated. To be able to compare studies on this topic, strict guidelines should be developed to limit the effect of several confounding factors. This way, the true interplay between oxidative stress, exercise, and pain, and the underlying mechanisms of action can be revealed and validated via independent studies.

14.
Arthritis Rheumatol ; 72(11): 1936-1944, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32562379

RESUMO

OBJECTIVE: The epigenetics of neurotrophic factors holds the potential to unravel the mechanisms underlying the pathophysiology of complex conditions such as chronic fatigue syndrome (CFS). This study was undertaken to explore the role of brain-derived neurotrophic factor (BDNF) genetics, epigenetics, and protein expression in patients with both CFS and comorbid fibromyalgia (CFS/FM). METHODS: A repeated-measures study was conducted in 54 participants (28 patients with CFS/FM and 26 matched healthy controls). Participants underwent a comprehensive assessment, including questionnaires, sensory testing, and blood withdrawal. Serum BDNF (sBDNF) protein levels were measured using enzyme-linked immunosorbent assay, while polymorphism and DNA methylation were measured in blood using pyrosequencing technology. To assess the temporal stability of the measures, participants underwent the same assessment twice within 4 days. RESULTS: Repeated-measures mixed linear models were used for between-group analysis, with mean differences and 95% confidence intervals (95% CIs) shown. Compared to controls, serum BNDF was higher in patients with CFS/FM (F = 15.703; mean difference 3.31 ng/ml [95% CI 1.65, 4.96]; P = 0.001), whereas BDNF DNA methylation in exon 9 was lower (F = 7.543; mean difference -2.16% [95% CI -3.93, -0.83]; P = 0.007). BDNF DNA methylation was mediated by the Val66Met (rs6265) polymorphism. Lower methylation in the same region predicted higher sBDNF levels (F = 7.137, ß = -0.408 [95% CI -0.711, -0.105]; P = 0.009), which in turn predicted participants' symptoms (F = 14.410, ß = 3.747 [95% CI 1.79, 5.71]; P = 0.001) and widespread hyperalgesia (F = 4.147, ß = 0.04 [95% CI 0.01, 0.08]; P = 0.044). CONCLUSION: Our findings indicate that sBDNF levels are elevated in patients with CFS/FM and that BDNF methylation in exon 9 accounts for the regulation of protein expression. Altered BDNF levels might represent a key mechanism explaining CFS/FM pathophysiology.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/sangue , Metilação de DNA , Síndrome de Fadiga Crônica/metabolismo , Fibromialgia/metabolismo , Hiperalgesia/metabolismo , Adulto , Síndrome de Fadiga Crônica/complicações , Síndrome de Fadiga Crônica/fisiopatologia , Feminino , Fibromialgia/complicações , Fibromialgia/fisiopatologia , Humanos , Hiperalgesia/complicações , Hiperalgesia/fisiopatologia , Pessoa de Meia-Idade , Medição da Dor
15.
J Hazard Mater ; 394: 122569, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32240902

RESUMO

Carbon nanotubes (CNTs) except MWCNT-7 have been classified as Group 3 ["Not classifiable as to its carcinogenicity to humans"] by the IARC. Despite considerable mechanistic evidence in vitro/in vivo, the classification highlights a general lack of data, especially among humans. In our previous study, we reported epigenetic changes in the MWCNT exposed workers. Here, we evaluated whether MWCNT can also cause alterations in aging related features including relative telomere length (TL) and/or mitochondrial copy number (mtDNAcn). Relative TL and mtDNAcn were measured on extracted DNA from peripheral blood from MWCNT exposed workers (N = 24) and non-exposed controls (N = 43) using a qPCR method. A higher mtDNAcn and longer TL were observed in MWCNT exposed workers when compared to controls. Independent of age, sex, smoking behavior, alcohol consumption and BMI, MWCNT-exposure was associated with an 18.30 % increase in blood TL (95 % CI: 7.15-30.62 %; p = 0.001) and 35.21 % increase in mtDNAcn (95 % CI: 19.12-53.46 %). Our results suggest that exposure to MWCNT can induce an increase in the mtDNAcn and TL; however, the mechanistic basis or consequence of such change requires further experimental studies.


Assuntos
DNA Mitocondrial , Nanotubos de Carbono , Telômero , Local de Trabalho , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Humanos , Nanotubos de Carbono/toxicidade , Telômero/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-32050546

RESUMO

Malignant pleural mesothelioma (MPM) is mainly related to previous asbestos exposure. There is still dearth of information on non-invasive biomarkers to detect MPM at early stages. Human studies on exhaled breath biomarkers of cancer and asbestos-related diseases show encouraging results. The aim of this systematic review was to provide an overview on the current knowledge about exhaled breath analysis in MPM diagnosis. A systematic review was conducted on MEDLINE (PubMed), EMBASE and Web of Science databases to identify relevant studies. Quality assessment was done by the Newcastle-Ottawa Scale. Six studies were identified, all of which showed fair quality and explored volatile organic compounds (VOC) based breath profile using Gas Chromatography Coupled to Mass Spectrometry (GC-MS), Ion Mobility Spectrometry Coupled to Multi-capillary Columns (IMS-MCC) or pattern-recognition technologies. Sample sizes varied between 39 and 330. Some compounds (i.e, cyclohexane, P3, P5, P50, P71, diethyl ether, limonene, nonanal, VOC IK 1287) that can be indicative of MPM development in asbestos exposed population were identified with high diagnostic accuracy rates. E-nose studies reported breathprints being able to distinguish MPM from asbestos exposed individuals with high sensitivity and a negative predictive value. Small sample sizes and methodological diversities among studies limit the translation of results into clinical practice. More prospective studies with standardized methodologies should be conducted on larger populations.


Assuntos
Amianto , Biomarcadores Tumorais , Testes Respiratórios , Mesotelioma , Compostos Orgânicos Voláteis , Biomarcadores Tumorais/análise , Expiração , Humanos , Mesotelioma/diagnóstico , Estudos Prospectivos
17.
Environ Int ; 137: 105530, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32062310

RESUMO

INTRODUCTION: Inhalation of asbestos induces lung cancer via different cellular mechanisms. Together with the increased production of carbon nanotubes (CNTs) grows the concern about adverse effects on the lungs given the similarities with asbestos. While it has been established that CNT and asbestos induce epigenetic alterations, it is currently not known whether alterations at epigenetic level remain stable after withdrawal of the exposure. Identification of DNA methylation changes after a low dose of CNT and asbestos exposure and recovery can be useful to determine the fibre/particle toxicity and adverse outcome. METHODS: Human bronchial epithelial cells (16HBE) were treated with a low and non-cytotoxic dose (0.25 µg/ml) of multi-walled carbon nanotubes (MWCNTs-NM400) or single-walled carbon nanotubes (SWCNTs-SRM2483) and 0.05 µg/ml amosite (brown) asbestos for the course of four weeks (sub-chronic exposure). After this treatment, the cells were further incubated (without particle/fibre) for two weeks, allowing recovery from the exposure (recovery period). Nuclear depositions of the CNTs were assessed using femtosecond pulsed laser microscopy in a label-free manner. DNA methylation alterations were analysed using microarrays that assess more than 850 thousand CpG sites in the whole genome. RESULTS: At non-cytotoxic doses, CNTs were noted to be incorporated with in the nucleus after a four weeks period. Exposure to MWCNTs induced a single hypomethylation at a CpG site and gene promoter region. No change in DNA methylation was observed after the recovery period for MWCNTs. Exposure to SWCNTs or amosite induced hypermethylation at CpG sites after sub-chronic exposure which may involve in 'transcription factor activity' and 'sequence-specific DNA binding' gene ontologies. After the recovery period, hypermethylation and hypomethylation were noted for both SWCNTs and amosite. Hippocalcinlike 1 (HPCAL1), protease serine 3 (PRSS3), kallikrein-related peptidase 3 (KLK3), kruppel like factor 3 (KLF3) genes were hypermethylated at different time points in either SWCNT-exposed or amosite-exposed cells. CONCLUSION: These results suggest that the specific SWCNT (SRM2483) and amosite fibres studied induce hypo- or hypermethylation on CpG sites in DNA after very low-dose exposure and recovery period. This effect was not seen for the studied MWCNT (NM400).


Assuntos
Amianto , Metilação de DNA , Nanotubos de Carbono , Amianto/toxicidade , Brônquios , Células Epiteliais , Genes , Humanos , Pulmão , Nanotubos de Carbono/toxicidade , Tripsina
18.
J Pain ; 21(7-8): 763-780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31837447

RESUMO

Accumulating evidence suggests that epigenetic mechanisms may hold great potential in the field of pain. We systematically reviewed the literature exploring epigenetic mechanisms in people with pain. Four databases have been interrogated: MEDLINE, The Cochrane Central Register of Controlled Trial, Scopus, and Web of Science, following PRISMA guidelines in conducting study selection and assessment. Thirty-seven studies were included. Studies explored epigenetics in conditions such as fibromyalgia, CRPS, neuropathies, or osteoarthritis. Research focussed on genome-wide and gene-specific DNA methylation, and miRNA expression. Bioinformatics analyses exploring miRNA-associated molecular pathways were also performed. Several genes already known for their role in pain (BDNF, HDAC4, PRKG1, IL-17, TNFRSF13B, etc.), and several miRNAs linked to inflammatory regulation, nociceptive signalling and protein kinases functions have been found to differ significantly between people with chronic pain and healthy controls. Although the studies included were cross-sectional in nature, and no conclusion on causal links between epigenetic changes and pain could be drawn, we summarised the large amount of data available in literature on the topic, highlighting results that have been replicated by independent investigations. The field of pain epigenetics appears very exciting and has all the potential to lead to remarkable scientific advances. However, high-quality, well-powered, longitudinal studies are warranted. PERSPECTIVE: Though more high-quality research is needed, available research exploring epigenetic mechanisms or miRNAs in people with pain shows that genes regulating synaptic plasticity and excitability, protein kinases, and elements of the immune system might hold great potential in understanding the pathophysiology of different conditions.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , MicroRNAs/genética , Dor/genética , Dor/metabolismo , Humanos
19.
J Hazard Mater ; 387: 121691, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31791862

RESUMO

Given the recent development in the field of particle and fibre toxicology, parallels have been drawn between Carbon nanotubes (CNTs) and asbestos. It is now established that both multi-walled (MWCNTs) and single-walled (SWCNTs) carbon nanotubes might contribute to pulmonary disease. Although multiple mechanisms might be involved in CNT induced pathogenesis, systematic understanding of the relationship between different CNT exposure (MWCNT vs SWCNT) and autophagy/ apoptosis/ necrosis, in human lung epithelial cells remains limited. In this study, we demonstrate that exposure to MWCNT (NM-400), but not SWCNT (NIST-SRM2483), leads to an autophagic response after acute exposure (24 h). MWCNT exposure was characterized by an increase in anti-apoptotic BCL2, downregulation of executor Caspase-3/7 and increase in expression of genes from the autophagy machinery. For SWCNT exposure however, we observed an overexpression of executor Caspase-3/7 and upregulation of pro-apoptotic BAX; enrichment for processes like cornification, apoptotic process, cell differentiation from proteomic analysis. These results clearly indicate a major difference in the pathways initiated by the CNTs, in vitro. While the present study design provides mechanistic understanding after an acute exposure for the tested CNTs, we believe that the information obtained here would have relevance in better understanding of CNT toxicity and pathogenesis in general.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Brônquios/citologia , Linhagem Celular , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mapeamento de Interação de Proteínas , Proteoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-31739404

RESUMO

BACKGROUND: Antimony (Sb) trioxide and antimony trisulfide are "2B: Possibly carcinogenic to humans" and "3: Unclassifiable" according to the International Agency for Research on Cancer (IARC). The U.S. National Toxicology Program (NTP) concluded that antimony trioxide "is reasonably anticipated to be a human carcinogen based on studies in rats and mice". We investigated the cancer hazard of antimony compounds for workers, a population with high exposure to antimony substances. METHODS: Using the "Guidelines for performing systematic reviews in the development of toxicity factors" (Texas Commission on Environmental Quality (TCEQ) 2017) as a guidance, we established a human and an animal toxicology data stream in Medline and ToxLine. Data from this review were applied in a human health risk assessment. RESULTS: A final pool of 10 occupational and 13 animal toxicology articles resulted after application of TCEQ guidelines. CONCLUSIONS: Antimony carcinogenicity evidence involving workers is inadequate, based on confounding, small sample sizes, incomparability across studies, and inadequate reference populations. An increased lung cancer risk cannot be excluded. Evidence for lung neoplasms caused by antimony trioxide inhalation in experimental animals is sufficient. Overall, carcinogenicity in workers is probable (International Agency for Research on Cancer (IARC) 2A). It remains unclear from what occupational exposure duration and dose this effect arises and whether exposure threshold values should be reconsidered.


Assuntos
Antimônio/toxicidade , Carcinógenos/toxicidade , Neoplasias/induzido quimicamente , Exposição Ocupacional/efeitos adversos , Medição de Risco , Animais , Humanos , Camundongos , Modelos Animais , Ratos , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA