Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurooncol Adv ; 6(1): vdad154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38239626

RESUMO

Background: Glioblastoma (GBM) displays alterations in iron that drive proliferation and tumor growth. Iron regulation is complex and involves many regulatory mechanisms, including the homeostatic iron regulator (HFE) gene, which encodes the homeostatic iron regulatory protein. While HFE is upregulated in GBM and correlates with poor survival outcomes, the function of HFE in GBM remains unclear. Methods: We interrogated the impact of cell-intrinsic Hfe expression on proliferation and survival of intracranially implanted animals through genetic gain- and loss-of-function approaches in syngeneic mouse glioma models, along with in vivo immune assessments. We also determined the expression of iron-associated genes and their relationship to survival in GBM using public data sets and used transcriptional profiling to identify differentially expressed pathways in control compared to Hfe-knockdown cells. Results: Overexpression of Hfe accelerated GBM proliferation and reduced animal survival, whereas suppression of Hfe induced apoptotic cell death and extended survival, which was more pronounced in females and associated with attenuation of natural killer cells and CD8+ T cell activity. Analysis of iron gene signatures in Hfe-knockdown cells revealed alterations in the expression of several iron-associated genes, suggesting global disruption of intracellular iron homeostasis. Further analysis of differentially expressed pathways revealed oxidative stress as the top pathway upregulated following Hfe loss. Hfe knockdown indeed resulted in enhanced 55Fe uptake and generation of reactive oxygen species. Conclusions: These findings reveal an essential function for HFE in GBM cell growth and survival, as well as a sex-specific interaction with the immune response.

2.
Mol Cell Biol ; 39(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31138664

RESUMO

Increased ribosomal biogenesis occurs during tissue hypertrophy, but whether ribosomal biogenesis is impaired during atrophy is not known. We show that hyperammonemia, which occurs in diverse chronic disorders, impairs protein synthesis as a result of decreased ribosomal content and translational capacity. Transcriptome analyses, real-time PCR, and immunoblotting showed consistent reductions in the expression of the large and small ribosomal protein subunits (RPL and RPS, respectively) in hyperammonemic murine skeletal myotubes, HEK cells, and skeletal muscle from hyperammonemic rats and human cirrhotics. Decreased ribosomal content was accompanied by decreased expression of cMYC, a positive regulator of ribosomal biogenesis, as well as reduced expression and activity of ß-catenin, a transcriptional activator of cMYC. However, unlike the canonical regulation of ß-catenin via glycogen synthase kinase 3ß (GSK3ß)-dependent degradation, GSK3ß expression and phosphorylation were unaltered during hyperammonemia, and depletion of GSK3ß did not prevent ammonia-induced degradation of ß-catenin. Overexpression of GSK3ß-resistant variants, genetic depletion of IκB kinase ß (IKKß) (activated during hyperammonemia), protein interactions, and in vitro kinase assays showed that IKKß phosphorylated ß-catenin directly. Overexpressing ß-catenin restored hyperammonemia-induced perturbations in signaling responses that regulate ribosomal biogenesis. Our data show that decreased protein synthesis during hyperammonemia is mediated via a novel GSK3ß-independent, IKKß-dependent impairment of the ß-catenin-cMYC axis.


Assuntos
Hiperamonemia/metabolismo , Subunidades Ribossômicas Menores/genética , Subunidades Ribossômicas Menores/metabolismo , beta Catenina/química , beta Catenina/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Fibrose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Hiperamonemia/genética , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Camundongos , Proteólise , Proteômica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Análise de Sequência de RNA , Transdução de Sinais
3.
Dev Cell ; 16(5): 661-74, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19460343

RESUMO

Eukaryotic cell migration proceeds by cycles of protrusion, adhesion, and contraction, regulated by actin polymerization, focal adhesion assembly, and matrix degradation. However, mechanisms coordinating these processes remain largely unknown. Here, we show that local regulation of thymosin-beta4 (Tbeta4) binding to actin monomer (G-actin) coordinates actin polymerization with metalloproteinase synthesis to promote endothelial cell motility. In particular and quite unexpectedly, FRET analysis reveals diminished interaction between Tbeta4 and G-actin at the cell leading edge despite their colocalization there. Profilin-dependent dissociation of G-actin-Tbeta4 complexes simultaneously liberates actin for filament assembly and facilitates Tbeta4 binding to integrin-linked kinase (ILK) in the lamellipodia. Tbeta4-ILK complexes then recruit and activate Akt2, resulting in matrix metalloproteinase-2 production. Thus, the actin-Tbeta4 complex constitutes a latent coordinating center for cell migratory behavior, allowing profilin to initiate a cascade of events at the leading edge that couples actin polymerization to matrix degradation.


Assuntos
Actinas/metabolismo , Aorta/citologia , Movimento Celular , Células Endoteliais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Bovinos , Células Endoteliais/citologia , Pseudópodes/metabolismo , Timosina/metabolismo
4.
Dev Cell ; 6(1): 29-41, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14723845

RESUMO

Cell movement is characterized by anterior-posterior polarization of multiple cell structures. We show here that the plasma membrane is polarized in moving endothelial cells (EC); in particular, plasma membrane microviscosity (PMM) is increased at the cell leading edge. Our studies indicate that cholesterol has an important role in generation of this microviscosity gradient. In vitro studies using synthetic lipid vesicles show that membrane microviscosity has a substantial and biphasic influence on actin dynamics; a small amount of cholesterol increases actin-mediated vesicle deformation, whereas a large amount completely inhibits deformation. Experiments in migrating ECs confirm the important role of PMM on actin dynamics. Angiogenic growth factor-stimulated cells exhibit substantially increased membrane microviscosity at the cell front but, unexpectedly, show decreased rates of actin polymerization. Our results suggest that increased PMM in lamellipodia may permit more productive actin filament and meshwork formation, resulting in enhanced rates of cell movement.


Assuntos
Membrana Celular/metabolismo , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Células Endoteliais/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Bovinos , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/ultraestrutura , Fatores de Crescimento Endotelial/metabolismo , Fatores de Crescimento Endotelial/farmacologia , Metabolismo dos Lipídeos , Polímeros/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Pseudópodes/ultraestrutura , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Viscosidade
5.
Nat Cell Biol ; 4(11): 894-900, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12402046

RESUMO

Endothelial cell (EC) movement is an initiating and rate-limiting event in the neogenesis and repair of blood vessels. Here, we explore the hypothesis that microviscosity of the plasma membrane (PM) is a key physiological regulator of cell movement. Aortic ECs treated with membrane-active agents, such as alpha-tocopherol, cholesterol and lysophospholipids, exhibited a biphasic dependency on membrane microviscosity, in which moderate increases enhanced EC migration, but increases beyond a threshold markedly inhibited migration. Surprisingly, angiogenic growth factors, that is, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), also increased membrane microviscosity, as measured in live cells by fluorescence recovery after photobleaching (FRAP). The localization of Rac to the PM was modified in cells treated with membrane-active agents or growth factors, suggesting a molecular mechanism for how membrane microviscosity influences cell movement. Our data show that angiogenic growth factors, as well as certain lipophilic molecules, regulate cell motility through alterations in membrane properties and the consequent relocalization of critical signalling molecules to membranes.


Assuntos
Aorta/citologia , Membrana Celular/metabolismo , Movimento Celular , Endotélio Vascular/citologia , Animais , Anisotropia , Bovinos , Células Cultivadas , Colesterol/farmacologia , Relação Dose-Resposta a Droga , Fator 2 de Crescimento de Fibroblastos/metabolismo , Imuno-Histoquímica , Lisofosfolipídeos/farmacologia , Microcirculação , Microscopia de Fluorescência , Fotodegradação , Transdução de Sinais , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , alfa-Tocoferol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA