Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(6): e0160622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36287077

RESUMO

High temperature growth/survival was revealed in a phylogenetic relative (SMMA_5) of the mesophilic Paracoccus isolated from the 78 to 85°C water of a Trans-Himalayan sulfur-borax spring. After 12 h at 50°C, or 45 min at 70°C, in mineral salts thiosulfate (MST) medium, SMMA_5 retained ~2% colony forming units (CFUs), whereas comparator Paracoccus had 1.5% and 0% CFU left at 50°C and 70°C, respectively. After 12 h at 50°C, the thermally conditioned sibling SMMA_5_TC exhibited an ~1.5 time increase in CFU count; after 45 min at 70°C, SMMA_5_TC had 7% of the initial CFU count. 1,000-times diluted Reasoner's 2A medium, and MST supplemented with lithium, boron, or glycine-betaine, supported higher CFU-retention/CFU-growth than MST. Furthermore, with or without lithium/boron/glycine-betaine, a higher percentage of cells always remained metabolically active, compared with what percentage formed single colonies. SMMA_5, compared with other Paracoccus, contained 335 unique genes: of these, 186 encoded hypothetical proteins, and 83 belonged to orthology groups, which again corresponded mostly to DNA replication/recombination/repair, transcription, secondary metabolism, and inorganic ion transport/metabolism. The SMMA_5 genome was relatively enriched in cell wall/membrane/envelope biogenesis, and amino acid metabolism. SMMA_5 and SMMA_5_TC mutually possessed 43 nucleotide polymorphisms, of which 18 were in protein-coding genes with 13 nonsynonymous and seven radical amino acid replacements. Such biochemical and biophysical mechanisms could be involved in thermal stress mitigation which streamline the cells' energy and resources toward system-maintenance and macromolecule-stabilization, thereby relinquishing cell-division for cell-viability. Thermal conditioning apparently helped inherit those potential metabolic states which are crucial for cell-system maintenance, while environmental solutes augmented the indigenous stability-conferring mechanisms. IMPORTANCE For a holistic understanding of microbial life's high-temperature adaptation, it is imperative to explore the biology of the phylogenetic relatives of mesophilic bacteria which get stochastically introduced to geographically and geologically diverse hot spring systems by local geodynamic forces. Here, in vitro endurance of high heat up to the extent of growth under special (habitat-inspired) conditions was discovered in a hot-spring-dwelling phylogenetic relative of the mesophilic Paracoccus species. Thermal conditioning, extreme oligotrophy, metabolic deceleration, presence of certain habitat-specific inorganic/organic solutes, and potential genomic specializations were found to be the major enablers of this conditional (acquired) thermophilicity. Feasibility of such phenomena across the taxonomic spectrum can well be paradigm changing for the established scopes of microbial adaptation to the physicochemical extremes. Applications of conditional thermophilicity in microbial process biotechnology may be far reaching and multifaceted.


Assuntos
Fontes Termais , Paracoccus , Betaína/metabolismo , Fontes Termais/microbiologia , Filogenia , Paracoccus/genética , Paracoccus/metabolismo , Boro , Lítio , Aminoácidos , Glicina
2.
Microbiology (Reading) ; 166(4): 386-397, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31999239

RESUMO

Chemolithotrophic sulfur oxidation represents a significant part of the biogeochemical cycling of this element. Due to its long evolutionary history, this ancient metabolism is well known for its extensive mechanistic and phylogenetic diversification across a diverse taxonomic spectrum. Here we carried out whole-genome sequencing and analysis of a new betaproteobacterial isolate, Pusillimonas ginsengisoli SBSA, which is found to oxidize thiosulfate via the formation of tetrathionate as an intermediate. The 4.7 Mb SBSA genome was found to encompass a soxCDYZAXOB operon, plus single thiosulfate dehydrogenase (tsdA) and sulfite : acceptor oxidoreductase (sorAB) genes. Recombination-based knockout of tsdA revealed that the entire thiosulfate is first converted to tetrathionate by the activity of thiosulfate dehydrogenase (TsdA) and the Sox pathway is not functional in this bacterium despite the presence of all necessary sox genes. The ∆soxYZ and ∆soxXA knockout mutants exhibited a wild-type-like phenotype for thiosulfate/tetrathionate oxidation, whereas ∆soxB, ∆soxCD and soxO::KanR mutants only oxidized thiosulfate up to tetrathionate intermediate and had complete impairment in tetrathionate oxidation. The substrate-dependent O2 consumption rate of whole cells and the sulfur-oxidizing enzyme activities of cell-free extracts, measured in the presence/absence of thiol inhibitors/glutathione, indicated that glutathione plays a key role in SBSA tetrathionate oxidation. The present findings collectively indicate that the potential glutathione : tetrathionate coupling in P. ginsengisoli involves a novel enzymatic component, which is different from the dual-functional thiol dehydrotransferase (ThdT), while subsequent oxidation of the sulfur intermediates produced (e.g. glutathione : sulfodisulfane molecules) may proceed via the iterative action of soxBCD .


Assuntos
Alcaligenaceae/metabolismo , Crescimento Quimioautotrófico/genética , Enxofre/metabolismo , Alcaligenaceae/genética , Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Glutationa/metabolismo , Mutação , Oxirredução , Oxirredutases/genética , Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Sulfitos/metabolismo , Ácido Tetratiônico/metabolismo , Tiossulfatos/metabolismo
3.
Microbiol Res ; 205: 1-7, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942835

RESUMO

Molecular mechanisms of chemolithotrophic tetrathionate oxidation are not clearly understood. Here we used transposon(Tn5-mob)-insertion mutagenesis to search for novel tetrathionate oxidation genes in the facultatively chemolithoautotrophic betaproteobacterium Advenella kashmirensis that not only oxidizes tetrathionate, but also produces the same as an intermediate during thiosulfate oxidation. Genome-wide random insertion of Tn5-mob occurred at a frequency of one per 104 donor E. coli cells. A library of 8000 transconjugants yielded five tetrathionate-oxidation-impaired mutants, of which, the one named Ak_Tn_16 was studied here in detail. When grown chemolithoautotrophically on thiosulfate, Ak_Tn_16 converted the total thiosulfate supplied to equivalent amount of tetrathionate, exactly in the same way as the wild type. It could not, however, oxidize the intermediary tetrathionate to sulfate; Ak_Tn_16 could not also oxidize tetrathionate when it was supplied as the starting chemolithotrophic substrate. In the Ak_Tn_16 genome, Tn5-mob was found to have transposed in a novel soxO gene, located just-upstream of soxB, within the sox gene cluster. SoxO was predicted, via iterative threading assembly simulation, to be a glutathione-disulfide (GSSG) reductase. When Ak_Tn_16 was grown in tetrathionate-based chemolithoautotrophic medium supplemented with reduced glutathione (GSH) its tetrathionate-oxidation deficiency, remarkably, was ameliorated. Implications for a key role of GSH in tetrathionate oxidation are discussed in the light of other molecular evidences available for A. kashmirensis.


Assuntos
Alcaligenaceae/genética , Alcaligenaceae/metabolismo , Glutationa Redutase/genética , Oxirredução , Ácido Tetratiônico/metabolismo , Sequência de Bases , Crescimento Quimioautotrófico/genética , Crescimento Quimioautotrófico/fisiologia , Elementos de DNA Transponíveis , DNA Bacteriano , Escherichia coli/genética , Genes Bacterianos/genética , Glutationa/metabolismo , Mutagênese Insercional , Análise de Sequência , Enxofre/metabolismo , Tiossulfatos/metabolismo
4.
Appl Environ Microbiol ; 79(14): 4455-64, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23686269

RESUMO

During chemolithoautotrophic thiosulfate oxidation, the phylogenetically diverged proteobacteria Paracoccus pantotrophus, Tetrathiobacter kashmirensis, and Thiomicrospira crunogena rendered steady enrichment of (34)S in the end product sulfate, with overall fractionation ranging between -4.6‰ and +5.8‰. The fractionation kinetics of T. crunogena was essentially similar to that of P. pantotrophus, albeit the former had a slightly higher magnitude and rate of (34)S enrichment. In the case of T. kashmirensis, the only significant departure of its fractionation curve from that of P. pantotrophus was observed during the first 36 h of thiosulfate-dependent growth, in the course of which tetrathionate intermediate formation is completed and sulfate production starts. The almost-identical (34)S enrichment rates observed during the peak sulfate-producing stage of all three processes indicated the potential involvement of identical S-S bond-breaking enzymes. Concurrent proteomic analyses detected the hydrolase SoxB (which is known to cleave terminal sulfone groups from SoxYZ-bound cysteine S-thiosulfonates, as well as cysteine S-sulfonates, in P. pantotrophus) in the actively sulfate-producing cells of all three species. The inducible expression of soxB during tetrathionate oxidation, as well as the second leg of thiosulfate oxidation, by T. kashmirensis is significant because the current Sox pathway does not accommodate tetrathionate as one of its substrates. Notably, however, no other Sox protein except SoxB could be detected upon matrix-assisted laser desorption ionization mass spectrometry analysis of all such T. kashmirensis proteins as appeared to be thiosulfate inducible in 2-dimensional gel electrophoresis. Instead, several other redox proteins were found to be at least 2-fold overexpressed during thiosulfate- or tetrathionate-dependent growth, thereby indicating that there is more to tetrathionate oxidation than SoxB alone.


Assuntos
Alcaligenaceae/metabolismo , Hidrolases/metabolismo , Paracoccus pantotrophus/metabolismo , Piscirickettsiaceae/metabolismo , Proteoma/metabolismo , Tiossulfatos/metabolismo , Processos Autotróficos , Proteínas de Bactérias/metabolismo , Dissulfetos/metabolismo , Oxirredução , Paracoccus pantotrophus/enzimologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Isótopos de Enxofre/metabolismo , Eletroforese em Gel Diferencial Bidimensional
5.
FEMS Microbiol Lett ; 270(1): 124-31, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17326754

RESUMO

Two tropical leguminous-rhizospheric strains, SST and JT 001, phylogenetically closest to Paracoccus thiocyanatus and Paracoccus pantotrophus, respectively, were isolated on reduced sulfur compounds as sole energy and electron sources. While SST had versatile chemolithotrophic abilities to oxidize thiosulfate, tetrathionate, thiocyanate, sulfide and elemental sulfur, JT 001 could oxidize thiosulfate, soluble sulfide, elemental sulfur and a relatively lesser amount of tetrathionate. Positive hybridization signals were detected for JT 001 but not SST, when their genomic DNAs were probed with DIG-labeled sulfur oxidation genes amplified from the chemolithotrophic alphaproteobacterium Pseudaminobacter salicylatoxidans KCT001. Though the new isolate SST exhibited high 16S rRNA gene sequence similarity with the monotypic species P. thiocyanatus, it was found to be considerably distinct from the latter in terms of phenotypic and chemotaxonomic characteristics. Polyphasic systematic analysis, however, confirmed that JT 001 was a strain of P. pantotrophus.


Assuntos
Processos Autotróficos , Paracoccus/metabolismo , Ácido Tetratiônico/metabolismo , Tiossulfatos/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio/metabolismo , Paracoccus/classificação , Paracoccus/genética , Filogenia , RNA Ribossômico 16S/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA