Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosci Rep ; 43(8)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37222403

RESUMO

Fibroblast growth factors (FGFs) are expressed in both developing and adult tissues and play important roles in embryogenesis, tissue homeostasis, angiogenesis, and neoplastic transformation. Here, we report the elevated expression of FGF16 in human breast tumor and investigate its potential involvement in breast cancer progression. The onset of epithelial-mesenchymal transition (EMT), a prerequisite for cancer metastasis, was observed in human mammary epithelial cell-line MCF10A by FGF16. Further study unveiled that FGF16 alters mRNA expression of a set of extracellular matrix genes to promote cellular invasion. Cancer cells undergoing EMT often show metabolic alteration to sustain their continuous proliferation and energy-intensive migration. Similarly, FGF16 induced a significant metabolic shift toward aerobic glycolysis. At the molecular level, FGF16 enhanced GLUT3 expression to facilitate glucose transport into cells, which through aerobic glycolysis generates lactate. The bi-functional protein, 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 4 (PFKFB4) was found to be a mediator in FGF16-driven glycolysis and subsequent invasion. Furthermore, PFKFB4 was found to play a critical role in promoting lactate-induced cell invasion since silencing PFKFB4 decreased lactate level and rendered the cells less invasive. These findings support potential clinical intervention of any of the members of FGF16-GLUT3-PFKFB4 axis to control the invasion of breast cancer cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transportador de Glucose Tipo 3 , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Glucose/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo
2.
Biochemistry ; 59(45): 4353-4366, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33136366

RESUMO

Permeation of the mitochondrial outer membrane (MOM) using the transmembrane domains (TMDs) is the key step of the Bcl-2 family of proteins to control apoptosis. The primary sequences of the TMDs of the family members like Bcl-xL, Bcl-2, Bak, etc. indicate the presence of charged residues at the C-terminal tip to be essential for drilling the membrane. However, Bax, a variant of the same family, is an exception, as the charged residues are shifted away from the tip by two positional frames in the primary sequence, but does it matter really? The free energy landscapes of membrane permeation, computed from a total of ∼13.3 µs of conformational sampling, show how such shifting of the amino acid frames in the primary sequence is correlated with the energy landscape that ensures the balance between membrane permeation and cytosolic population. Shifting the charged residues back to the terminal, in suitable mutants of Bax, proves the necessity of terminal charged residues by improving the insertion free energy but adds a high energy barrier unless some other polar residues are adjusted further. The difference in the TMDs of Bcl-xL and Bax is also reflected in their mechanism to drill the MOM-like anionic membrane; only Bax-TMD requires surface crowding to favorably shape the permeation landscape by weakening the bilayer integrity. So, this investigation suggests that such proteins can calibrate the free energy landscape of membrane permeation by adjusting the positions of the charged or polar residues in the primary sequence frames, a strategy analogous to the game of the "sliding tile puzzle" but played with primary sequence frames.


Assuntos
Membrana Celular/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sequência de Aminoácidos , Calibragem , Membrana Celular/química , Permeabilidade da Membrana Celular , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Domínios Proteicos , Termodinâmica
3.
IUCrJ ; 7(Pt 5): 825-834, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939274

RESUMO

Radiation-induced damage to protein crystals during X-ray diffraction data collection is a major impediment to obtaining accurate structural information on macromolecules. Some of the specific impairments that are inflicted upon highly brilliant X-ray irradiation are metal-ion reduction, disulfide-bond cleavage and a loss of the integrity of the carboxyl groups of acidic residues. With respect to disulfide-bond reduction, previous results have indicated that not all disulfide bridges are equally susceptible to damage. A careful analysis of the chemical environment of disulfide bonds in the structures of elastase, lysozyme, acetylcholinesterase and other proteins suggests that S-S bonds which engage in a close contact with a carbonyl O atom along the extension of the S-S bond vector are more susceptible to reduction than the others. Such an arrangement predisposes electron transfer to occur from the O atom to the disulfide bond, leading to its reduction. The interaction between a nucleophile and an electrophile, akin to hydrogen bonding, stabilizes protein structures, but it also provides a pathway of electron transfer to the S-S bond, leading to its reduction during exposure of the protein crystal to an intense X-ray beam. An otherwise stabilizing interaction can thus be the cause of destabilization under the condition of radiation exposure.

4.
J Chem Inf Model ; 59(5): 2274-2286, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30516382

RESUMO

The α,ß-tubulin is the building block of microtubules, which is associated with and dissociated from the microtubular architecture complying with the dynamic instability of the microtubules. This dynamic instability has a direct relation with the spindle formation by the microtubules and cell division kinetics. E7010 is one of the promising ligands of an α,ß-tubulin protein that binds at the core of this protein and can diminish the protein's ability to fit to a growing microtubule, thus frustrating cell division. Although X-ray crystallography has reported a specific binding conformation of E7010 in PDB, molecular dynamics (MD) simulations have revealed two other conformational states of the ligand capable of binding to tubulin with stabilities close to that state reported in PDB. To rationalize this quasidegeneracy of ligand binding modes, MD simulations have further revealed that the understanding of the mechanism of E7010-tubulin binding remains incomplete unless the role of water molecules to bridge this interaction is taken into consideration, a very critical insight that was not visible from the PDB structure. Further, these water molecules differ from the standard examples of "bridging" waters which generally exist as isolated water molecules between the receptor and the ligand. In the present case, the water molecules sandwiched between ligand and protein, sequestered from the bulk solvent, integrate with each other by an H-bonds network forming a group, which appear as microclusters of water. The structural packing with the ligand binding pocket and the bridging interactions between protein and ligand take place through such clusters. The presence of this microcluster of water is not just cosmetic, instead they have a crucial impact on the ligand binding thermodynamics. Only with the explicit consideration of these water clusters in the binding energy calculations (MMGBSA) is the stability of the native mode of ligand binding reported in PDB rationalized. At the same time, two other binding modes are elucidated to be quasi-degenerate with the native state and that indicates the further possibility in gaining more entropic stabilization of the complex. The role of such "bridging" water clusters to enhance the protein-ligand interaction will be insightful for designing the next generation prospective compounds in the field of cancer therapeutics.


Assuntos
Aminofenóis/química , Simulação de Dinâmica Molecular , Sulfonamidas/química , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Água/química , Aminofenóis/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Microtúbulos/metabolismo , Conformação Proteica , Sulfonamidas/metabolismo
5.
Comput Biol Chem ; 77: 17-27, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30195235

RESUMO

The proteins of Bcl-2 family, which are promising anti-cancer-drug targets, have substantial similarity in primary sequence and share homologous domains as well as similar structural folds. In spite of similarities in sequence and structures, the members of its pro- and anti- apoptotic subgroups form complexes with different type of partners with discriminating binding affinities. Understanding the origin of this discrimination is very important for designing ligands that can either selectively target a protein or could be made broad ranged as necessary. Using principal component analysis (PCA) of the available structures and from the analysis of the evolution of the binding pocket residues, the correlation has been investigated considering two important anti-apoptotic protein Bcl-xl and Mcl-1, which serve as two ideal representatives of this family. The flexibility of the receptor enables them to discriminate between the ligands or the binding partners. It has been observed that although Bcl-xl and Mcl-1 are classified as homologous proteins, through the course of evolution the binding pocket residues are highly conserved for Bcl-xl; whereas they have been substituted frequently in Mcl-1. The investigation has revealed that the Bcl-xl can adjust the backbone conformation of the binding pocket residues to a larger extent to complement with the shape of different binding partners whereas the Mcl-1 shows more variation in the side chain conformation of binding pocket residues for the same purpose.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína bcl-X/química , Proteína bcl-X/metabolismo , Humanos , Ligantes , Modelos Moleculares , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Análise de Componente Principal , Conformação Proteica , Bibliotecas de Moléculas Pequenas/síntese química , Proteína bcl-X/antagonistas & inibidores
6.
J Mol Graph Model ; 59: 1-13, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25817992

RESUMO

The Bcl-xl protein is a potential drug target for cancer, and it has a relatively flat and flexible binding pocket. ABT263 is one of the most promising molecules that inhibit Bcl-xl, and it was developed from its precursor ABT737 with suitable substitutions. However, the structural and mechanistic implications of those changes have not yet been reported. Molecular dynamics simulation has revealed that the conformational microstates of the complex of Bcl-xl and ABT263 shows heterogeneity at the binding interface with Bcl-xl in contrast to the precise interactions witnessed in case of ABT737. This occurs because not all the functional groups of ABT263 are able to anchor into the binding pocket simultaneously at the time of complexation; leaving at least one group weakly associated every time. The insight into the mechanism shows that, in spite of such mutual exclusivity, the resultant effect becomes beneficial, i.e., becomes more effective than ABT737. Going against the traditional belief, the calculations also confirm that there is no benefit of reshaping the highly flexible binding pocket to allow the ligand to be comfortably accommodated and avoid conflicting orientations of the functional groups, as the destabilization becomes active from other sources. These structural clues and in-silico tests suggest possible avenues for improving the binding affinity of ABT263 through further in-vitro and in-vivo tests.


Assuntos
Ligação Proteica/fisiologia , Proteína bcl-X/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA