Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1303: 57-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33788187

RESUMO

Reductionist approaches have served as the cornerstone for traditional mechanistic endeavors in biomedical research. However, for pulmonary hypertension (PH), a relatively rare but deadly vascular disease of the lungs, the use of traditional reductionist approaches has failed to define the complexities of pathogenesis. With the development of new -omics platforms (i.e., genomics, transcriptomics, proteomics, and metabolomics, among others), network biology approaches have offered new pipelines for discovery of human disease pathogenesis. Human disease processes are driven by multiple genes that are dysregulated which are affected by regulatory networks. Network theory allows for the identification of such gene clusters which are dysregulated in various disease states. This framework may in part explain why current therapeutics that seek to target a single part of a dysregulated cluster may fail to provide clinically significant improvements. Correspondingly, network biology could further the development of novel therapeutics which target clusters of "disease genes" so that a disease phenotype can be more robustly addressed. In this chapter, we seek to explain the theory behind network biology approaches to identify drivers of disease as well as how network biology approaches have been used in the field of PH. Furthermore, we discuss an example of in silico methodology using network pharmacology in conjunction with gene networks tools to identify drugs and drug targets. We discuss similarities between the pathogenesis of PH and other disease states, specifically cancer, and how tools developed for cancer may be repurposed to fill the gaps in research in PH. Finally, we discuss new approaches which seek to integrate clinical health record data into networks so that correlations between disease genes and clinical parameters can be explored in the context of this disease.


Assuntos
Hipertensão Pulmonar , Biologia de Sistemas , Genômica , Humanos , Hipertensão Pulmonar/genética , Metabolômica , Proteômica
2.
Nano Lett ; 21(1): 875-886, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33395313

RESUMO

Monoclonal antibodies (mAb) have had a transformative impact on treating cancers and immune disorders. However, their use is limited by high development time and monetary cost, manufacturing complexities, suboptimal pharmacokinetics, and availability of disease-specific targets. To address some of these challenges, we developed an entirely synthetic, multivalent, Janus nanotherapeutic platform, called Synthetic Nanoparticle Antibodies (SNAbs). SNAbs, with phage-display-identified cell-targeting ligands on one "face" and Fc-mimicking ligands on the opposite "face", were synthesized using a custom, multistep, solid-phase chemistry method. SNAbs efficiently targeted and depleted myeloid-derived immune-suppressor cells (MDSCs) from mouse-tumor and rat-trauma models, ex vivo. Systemic injection of MDSC-targeting SNAbs efficiently depleted circulating MDSCs in a mouse triple-negative breast cancer model, enabling enhanced T cell and Natural Killer cell infiltration into tumors. Our results demonstrate that SNAbs are a versatile and effective functional alternative to mAbs, with advantages of a plug-and-play, cell-free manufacturing process, and high-throughput screening (HTS)-enabled library of potential targeting ligands.


Assuntos
Nanopartículas Multifuncionais , Células Supressoras Mieloides , Nanopartículas , Animais , Anticorpos Monoclonais , Humanos , Células Matadoras Naturais , Camundongos , Ratos
3.
Trends Cell Biol ; 30(3): 201-212, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31983571

RESUMO

Increasing evidence implicates metabolic pathways as key regulators of cell fate and function. Although the metabolism of glucose, amino acids, and fatty acids is essential to maintain overall energy homeostasis, the choice of a given metabolic pathway and the levels of particular substrates and intermediates increasingly appear to modulate specific cellular activities. This connection is likely related to the growing appreciation that molecules such as acetyl-CoA act as a shared currency between metabolic flux and chromatin modification. We review recent evidence for a role of metabolism in modulating cellular function in four distinct contexts. These areas include the immune system, the tumor microenvironment, the fibrotic response, and stem cell function. Together, these examples suggest that metabolic pathways do not simply provide the fuel that powers cellular activities but instead help to shape and determine cellular identity.


Assuntos
Linhagem da Célula , Células/citologia , Células/metabolismo , Animais , Células/imunologia , Fibrose , Humanos , Células-Tronco/metabolismo , Microambiente Tumoral/imunologia
4.
Circ Res ; 120(4): 701-712, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-27872050

RESUMO

RATIONALE: Studies have demonstrated that exosomes can repair cardiac tissue post-myocardial infarction and recapitulate the benefits of cellular therapy. OBJECTIVE: We evaluated the role of donor age and hypoxia of human pediatric cardiac progenitor cell (CPC)-derived exosomes in a rat model of ischemia-reperfusion injury. METHODS AND RESULTS: Human CPCs from the right atrial appendages from children of different ages undergoing cardiac surgery for congenital heart defects were isolated and cultured under hypoxic or normoxic conditions. Exosomes were isolated from the culture-conditioned media and delivered to athymic rats after ischemia-reperfusion injury. Echocardiography at day 3 post-myocardial infarction suggested statistically improved function in neonatal hypoxic and neonatal normoxic groups compared with saline-treated controls. At 28 days post-myocardial infarction, exosomes derived from neonatal normoxia, neonatal hypoxia, infant hypoxia, and child hypoxia significantly improved cardiac function compared with those from saline-treated controls. Staining showed decreased fibrosis and improved angiogenesis in hypoxic groups compared with controls. Finally, using sequencing data, a computational model was generated to link microRNA levels to specific outcomes. CONCLUSIONS: CPC exosomes derived from neonates improved cardiac function independent of culture oxygen levels, whereas CPC exosomes from older children were not reparative unless subjected to hypoxic conditions. Cardiac functional improvements were associated with increased angiogenesis, reduced fibrosis, and improved hypertrophy, resulting in improved cardiac function; however, mechanisms for normoxic neonatal CPC exosomes improved function independent of those mechanisms. This is the first study of its kind demonstrating that donor age and oxygen content in the microenvironment significantly alter the efficacy of human CPC-derived exosomes.


Assuntos
Exossomos/fisiologia , MicroRNAs/fisiologia , Miócitos Cardíacos/fisiologia , Traumatismo por Reperfusão/terapia , Células-Tronco/fisiologia , Fatores Etários , Animais , Hipóxia Celular/fisiologia , Células Cultivadas , Criança , Pré-Escolar , Compreensão , Método Duplo-Cego , Exossomos/transplante , Humanos , Lactente , Recém-Nascido , MicroRNAs/administração & dosagem , Miócitos Cardíacos/transplante , Distribuição Aleatória , Ratos , Ratos Nus , Traumatismo por Reperfusão/fisiopatologia , Transplante de Células-Tronco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA