Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 239: 123093, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920258

RESUMO

The increased production and use of nanopesticides will increase the likelihood of their exposure to humans and the environment. In order to properly evaluate their risk, it will be necessary to rigorously quantify their concentrations in major environmental compartments including water, soil and food. Due to major differences in the characteristics of their formulation, it is unclear whether analytical techniques that have been developed for conventional pesticides will allow quantification of the nano-forms. Therefore, it is necessary to develop and validate analytical techniques for the quantification of nanopesticides in foods and the environment. The goal of this study was to validate a method for analyzing the active ingredients of two pesticides with different physicochemical properties: azoxystrobin (AZOX, a fungicide, log Kow 3.7) and bifenthrin (BFT, an insecticide, log Kow 6.6) that were applied to agricultural soils, either as a conventional formulation or encapsulated in nanoparticles (either Allosperse® or porous hollow nSiO2). Pesticide-free strawberry plants (Fragaria × ananassa) and three different agricultural soils were spiked with the active ingredients (azoxystrobin and bifenthrin), in either conventional or nano formulations. A modified QuEChERS approach was used to extract the pesticides from the strawberry plants (roots, leaves and fruits) and a solvent extraction (1:2 acetonitrile) was employed for the soils. Samples were analyzed by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry in order to determine method detection limits, recoveries, precision and matrix effects for both the "conventional" and nanoencapsulated pesticides. Results for the modified method indicated good recoveries and precision for the analysis of the nanoencapsulated pesticides from strawberries and agricultural soils, with recoveries ranging from 85 to 127% (AZOX) and 68-138% (BFT). The results indicated that the presence of the nanoencapsulants had significant effects on the efficiency of extraction and the quantification of the active ingredients. The modified analytical methods were successfully used to measure strawberry and soil samples from a field experiment, providing the means to explore the fate of nanoencapsulated pesticides in food and environmental matrices.


Assuntos
Fragaria , Resíduos de Praguicidas , Praguicidas , Cromatografia Líquida , Humanos , Resíduos de Praguicidas/análise , Praguicidas/análise , Solo , Espectrometria de Massas em Tandem
2.
IEEE Trans Nanobioscience ; 21(1): 157-165, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34398760

RESUMO

Arsenic (As) is highly toxic in its inorganic form. It is naturally presented at elevated levels in the groundwater of a number of countries and contaminates drinking water sources, generating numerous health and environmental problems. Current methodologies for its remediation have deficiencies which fuel the constant exploration of new alternatives. Therefore, the development of robust methodologies for the evaluation of potential remediation technologies are not only timely but also highly needed. In this study we have investigated the use of a rice plant species as a means to evaluate the efficacy of As remediation using sulfidated zerovalent iron nanoparticles (S-nZVI). The obtained results show that addition of S-nZVI to soils had a beneficial impact to plant growth in the presence of As(V) and As(III) concentrations between 10 and 50 ppm. Positive effects were also found for plant biomass and chlorophyll content in the plants. Moreover, evaluation of As uptake by plants showed that the application of S-nZVI reduced the amount of both As(V) and As(III) in shoots and increased the amount of As in the roots. Studies on the Fe and P content in shoot and root after exposure to As with and without the nanoparticles demonstrated that nanoparticles remain mainly in the roots and that P uptake by plants was not significantly affected, suggesting that S-nZVI treatment is safe for plants at the assayed doses. These results overall confirm the method as robust and reliable for demonstrating the reduction of the bioavailability of As in soil by S-nZVI sequestration.


Assuntos
Arsênio , Nanopartículas , Oryza , Poluentes do Solo , Ferro , Solo
3.
Water Res ; 201: 117328, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171646

RESUMO

Sulfidated nanoscale zerovalent iron (S-nZVI) is a promising reductant for trichloroethylene in groundwater, yet a comprehensive understanding of its degradation efficiency for other chlorinated hydrocarbons (CHCs) is lacking. In this study, we assessed the benefits of using S-nZVI for the degradation of two chlorinated methanes, three chlorinated ethanes, and four chlorinated ethenes compared to unamended nZVI, by analyzing the degradation rate constants, the maximum degradation quantity, and the degradation pathways and products under both stoichiometrically electron excess and limited conditions. The improvement in rate constants induced by sulfidation was compound specific and was more significant for chlorinated ethenes (57-707 folds) than for the other CHCs (1.0-17 folds). This is likely because of the different reduction mechanisms of each CHC and sulfidation may favor specific mechanisms associated with the reduction of chlorinated ethenes more than the others. Sulfidation of nZVI enabled either higher (3.1-24.4 folds) or comparable (0.78-0.91) maximum degradation quantity, assessed under electron limited conditions, for all the CHCs investigated, indicating the promise of S-nZVI for remediation of groundwater contaminated by CHC mixtures. Furthermore, we proposed the degradation pathways of various CHCs based on the observed degradation intermediates and products and found that sulfidation suppressed the generation of partially dechlorinated products, particularly for chlorinated methanes and ethanes, and favor degradation pathways leading to the non-chlorinated benign products. This is the first comprehensive study on the efficacy of sulfidation in improving the degradation of a suite of CHCs and the results provide valuable insight to the assessment of applicability and benefits of S-nZVI for CHC remediation.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Ferro
4.
Environ Sci Technol ; 55(13): 8464-8483, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170112

RESUMO

2021 marks 10 years since controlled abiotic synthesis of sulfidated nanoscale zerovalent iron (S-nZVI) for use in site remediation and water treatment emerged as an area of active research. It was then expanded to sulfidated microscale ZVI (S-mZVI) and together with S-nZVI, they are collectively referred to as S-(n)ZVI. Heightened interest in S-(n)ZVI stemmed from its significantly higher reactivity to chlorinated solvents and heavy metals. The extremely promising research outcomes during the initial period (2011-2017) led to renewed interest in (n)ZVI-based technologies for water treatment, with an explosion in new research in the last four years (2018-2021) that is building an understanding of the novel and complex role of iron sulfides in enhancing reactivity of (n)ZVI. Numerous studies have focused on exploring different S-(n)ZVI synthesis approaches, and its colloidal, surface, and reactivity (electrochemistry, contaminant selectivity, and corrosion) properties. This review provides a critical overview of the recent milestones in S-(n)ZVI technology development: (i) clear insights into the role of iron sulfides in contaminant transformation and long-term aging, (ii) impact of sulfidation methods and particle characteristics on reactivity, (iii) broader range of treatable contaminants, (iv) synthesis for complete decontamination, (v) ecotoxicity, and (vi) field implementation. In addition, this review discusses major knowledge gaps and future avenues for research opportunities.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Purificação da Água , Corrosão , Ferro
5.
Sci Total Environ ; 671: 254-261, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30928754

RESUMO

Sulfidated nanoscale zerovalent iron (S-NZVI) is a new remediation material with higher reactivity and greater selectivity for chlorinated organic contaminants such as trichloroethene (TCE) than NZVI. The properties of S-NZVI and the effects of groundwater constituents like natural organic matter (NOM) on its reactivity are less well-characterized than for NZVI. In this study, S-NZVI (Fe/S mole ratio = 15) was synthesized by sonicating NZVI in a Na2S solution, yielding particles with greater surface charge, less aggregation, and higher reactivity with TCE compared to NZVI. The cytotoxicity of S-NZVI was not mitigated effectively due to the smaller size. The addition of Suwannee River humic acid (SRHA) increased the negative surface charge magnitude and dispersion stability and reduced the toxicity of both NZVI and S-NZVI significantly, but also enhanced the corrosion of particles and the formation of non-conductive film. The degradation rate constant (ksa) of both NZVI and S-NZVI was thus reduced with the increasing concentration of SRHA, which decreased by 78% and 60% to be 0.0004 and 0.0053 L m-2 h-1, respectively, with 200 mg C/L SRHA. Additionally, the performance of S-NZVI in field was evaluated to be depressed in simulated groundwater and the negative effect was exacerbated with increased concentration of SRHA. Hydro-chemical conditions like dissolved oxygen (DO), pH, and temperature also influenced the reactivity of S-NZVI. Hence, S-NZVI was a preferred candidate for in-situ remediation of TCE than NZVI. Nevertheless, the integrity of the FeS shell on S-NZVI influenced by NOM need to be considered during the long-term use of S-NZVI in groundwater remediation.


Assuntos
Água Subterrânea/química , Substâncias Húmicas , Nanopartículas Metálicas/química , Tricloroetileno/química , Coloides/química , Concentração de Íons de Hidrogênio , Oxigênio/análise , Enxofre/química , Temperatura
6.
J Hazard Mater ; 362: 140-147, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30236934

RESUMO

Aqueous film forming foams (AFFFs) containing perfluoroalkyl and polyfluoroalkyl substances (PFASs) are commonly deployed to extinguish hydrocarbon fuel fires, resulting in petroleum hydrocarbons coexisting with PFASs in contaminated soil. Nutrient-amended and aerated biopiles used for petroleum hydrocarbon bioremediation could cause unintended transformation of polyfluorinated substances into perfluoroalkyl carboxylates (PFCAs). The study sought to examine environmental behaviors of PFASs in engineered treatment facilities by monitoring AFFF-derived PFASs under three nutrient conditions. The influence of nutrient levels on degradation kinetics and efficiency was found to vary between the two chemical classes and among individual PFASs. A high number of compounds including the zwitterionic polyfluoroalkyl betaines that have aged in the field for two years were continuously biotransforming in lab reactors, demonstrating their slow kinetics and environmental persistence. The low yield to PFCAs implies that the processes such as the formation of bound residues or irreversible sorption might play a major role in reducing detectable levels of zwitterionic PFASs. The high persistence of betaines was further confirmed by the behaviors of a freshly spiked sulfonamide betaine. The study demonstrated complex chemical dynamics in AFFF-impacted soils and the challenges for predicting the fate of PFASs in soil biopiling facilities.


Assuntos
Fluorocarbonos/análise , Hidrocarbonetos/química , Petróleo , Solo/química , Poluentes Químicos da Água/análise , Adsorção , Aerobiose , Betaína/química , Biotransformação , Poluição Ambiental , Água Subterrânea/química , Cinética , Poluentes do Solo , Sulfonamidas/química , Água
7.
Sci Total Environ ; 647: 1199-1210, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30180328

RESUMO

Municipal water resource recovery facilities are the primary recipients of a significant fraction of discharged silver nanoparticle (AgNP)-containing wastes, yet the fate and potential risks of AgNPs in attached-growth biological wastewater treatment processes are poorly understood. The fate and inhibitory effects of polyvinylpyrrolidone (PVP)-coated AgNPs at environmentally-relevant nominal concentrations (10, 100, 600 µg/L) were investigated, for the first time, in high rate moving bed biofilm reactors (MBBRs) for soluble organic matter removal. The behavior and removal of continuously added AgNPs were characterized using single-particle inductively coupled plasma mass spectrometry (spICP-MS). While no inhibitory effect at average influent concentration of 10.8 µg/L Ag was observed, soluble COD removal efficiency was significantly decreased at 131 µg/L Ag in 18 days and 631 µg/L Ag in 5 days with suppressed biofilm viability. The inhibitory effect of AgNPs on treatment efficiency was highly correlated to the retained mass of total Ag in attached biofilm on the carriers. Biofilm demonstrated limited retention capacity for AgNPs over 18 days. Considerable mass of Ag (38% to 75%) was released via effluent, predominantly as NPs. We detected some chemically transformed and potentially less toxic forms of silver nanoparticles (Ag2S, AgCl), over the exposure period. This study demonstrated the distinct interaction dynamics, bioavailability and inhibitory effects of AgNPs in a biofilm system. Release of bioavailable AgNPs via effluent and AgNP-rich biofilm, sloughing off the carriers, can affect the treatment chain efficiency of downstream processes. Thus, the inhibitory effects of AgNPs can be a concern even at concentrations as low as 100 to 600 µg/L Ag in biological attached growth wastewater treatments.


Assuntos
Biofilmes , Reatores Biológicos/microbiologia , Nanopartículas Metálicas/análise , Prata/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Nanopartículas Metálicas/toxicidade , Povidona , Prata/toxicidade , Águas Residuárias , Poluentes Químicos da Água/toxicidade
8.
Environ Sci Technol ; 52(19): 11078-11086, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30188121

RESUMO

Sulfidated nanoscale zerovalent iron (S-nZVI) has the potential to be a cost-effective remediation agent for a wide range of environmental pollutants, including chlorinated solvents. Various synthesis approaches have yielded S-nZVI consisting of a Fe0 (or Fe0/S0) core and FeS shell, which are significantly more reactive to trichloroethene (TCE) than nZVI. However, their reactivity is not as high as palladium-doped nZVI (Pd-nZVI). We synthesized S-nZVI by the co-precipitation of FeS and Fe0 by using Na2S during the borohydride reduction of FeSO4 (S-nZVIco). This resulted in FeS structures bridging the nZVI core and the surface, as confirmed by electron microscopy and X-ray analyses. The TCE degradation capacity of up to 0.46 mol TCE/mol Fe0 was obtained for S-nZVIco at a high S loading and was comparable to Pd-nZVI but 60% higher than the currently most reactive S-nZVI, in which FeS only coats the nZVI (S-nZVIpost). The high TCE degradation was due to complete utilization of Fe0 (2 e-/mol Fe0) toward the formation of acetylene. Although Pd-nZVI yielded 3 e-/mol Fe0, TCE degradation was comparable because it reduced acetylene further to ethene and ethane. Under Fe0-limited conditions, the S-nZVIco TCE degradation rate was 16 times higher than that of Pd-nZVI (0.5 wt % Pd) and 90 times higher than that of S-nZVIpost.


Assuntos
Tricloroetileno , Ferro , Paládio
9.
Environ Sci Technol ; 52(11): 6300-6308, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29706067

RESUMO

The sorption of perfluoroalkyl acids (PFAAs), particularly perfluorooctanesulfonic acid (PFOS), to freshly synthesized nanoscale zerovalent iron (nZVI) and aged (oxidized) and sulfidated nZVI, was investigated under anaerobic conditions. The sorption of PFAAs to nZVI was 2-4 orders of magnitude higher than what has been reported for sediments, soils, and iron oxides. The hydrophobicity of the perfluorocarbon chain dominated the sorption, although FTIR spectra indicated specific interactions between sulfonate and carboxylate head groups and nZVI. The contributions from electrostatic interactions depended on the surface charge and pH. Humic acids influenced sorption only at concentrations above 50 mg/L. nZVI aged in deoxygenated water up to 95 days showed similar sorption isotherms for PFOS to fresh nZVI, because Fe(OH)2 was the predominant phase on the nZVI surface independent of aging time. Sulfidation of nZVI reduced sorption of PFOS by 1 log unit owing to the FeS deposited, but the sorption affinity was restored after aging because of formation of Fe(OH)2. Oxidation of nZVI by water and dissolved oxygen also resulted in similar sorption of PFOS as fresh nZVI at environmentally relevant concentrations. The results suggest that injection of nZVI could reduce PFAA concentrations in groundwater despite changes to its surface chemistry with aging.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Substâncias Húmicas , Ferro
10.
Environ Sci Technol ; 50(24): 13318-13327, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27993044

RESUMO

Ag nanoparticles (nAg) are used in various consumer products and a significant fraction is eventually discharged with municipal wastewater (WW). In this study we assessed the release of Ag from polyvinylpyrrolidone (PVP)- and citrate-coated 80 nm nAg in aerobic WW effluent and mixed liquor and the related changes in nAg size, using single particle ICP-MS (spICP-MS). The concentration of dissolved (nonparticulate) Ag in WW effluent was 0.89 ± 0.05 ppb at 168 h and was 71% lower than in deionized (DI) water, in batch reactors spiked with 5 × 106 PVP-nAg particles/mL (10 µg/L), an environmentally relevant concentration. Dissolved Ag in WW was partly reformed into ∼22 nm nAgxSy by inorganic sulfides and organosulfur dissolved organic carbon (DOC) after 120 h, whereas the parent nAg mean diameter decreased to 65.89 ± 0.9 nm. Reformation of nAgxSy from Ag+ also occurred in cysteine solutions but not in DI water, or humic and fulvic acid solutions. Dissolution experiments with nAg in WW mixed liquor showed qualitatively similar dissolution trends. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS) analyses indicated binding of thiol- and amine-containing DOC as well as inorganic sulfides with nAg. Those WW components, as well as limited dissolved oxygen, decreased dissolution in WW.


Assuntos
Prata/química , Águas Residuárias/química , Nanopartículas Metálicas/química , Solubilidade , Poluentes Químicos da Água/química
11.
Environ Sci Technol ; 50(16): 8631-9, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27377979

RESUMO

Palladium-doped nanoscale zerovalent iron (Pd-NZVI) has been shown to degrade environmental contaminants such as trichloroethene (TCE) to benign end-products through aqueous phase reactions. In this study we show that rhamnolipid (biosurfactant)-coated Pd-NZVI (RL-Pd-NZVI) when reacted with TCE in a 1-butanol organic phase with limited amounts of water results in 50% more TCE mass degradation per unit mass of Pd-NZVI, with a 4-fold faster degradation rate (kobs of 0.413 day(-1) in butanol organic phase versus 0.099 day(-1) in aqueous phase). RL-Pd-NZVI is preferentially suspended in water in biphasic organic liquid-water systems because of its hydrophilic nature. We demonstrate herein for the first time that their rapid phase transfer to a butanol/TCE organic phase can be achieved by adding NaCl and creating water-in-oil emulsions in the organic phase. The significant enhancement in reactivity is caused by a higher electron release (3e(-) per mole of Fe(0)) from Pd-NZVI in the butanol organic phase compared to the same reaction with TCE in the aqueous phase (2e(-) per mole of Fe(0)). XPS characterization studies of Pd-NZVI show Fe(0) oxidation to Fe(III) oxides for Pd-NZVI reacted with TCE in the butanol organic phase compared to Fe(II) oxides in the aqueous phase, which accounted for differences in the TCE reactivity extents and rates observed in the two phases.


Assuntos
Recuperação e Remediação Ambiental , Ferro/química , Tricloroetileno/isolamento & purificação , 1-Butanol , Glicolipídeos/química , Nanopartículas Metálicas/química , Paládio/química
12.
Chemosphere ; 150: 8-16, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26891351

RESUMO

The transport of nanoscale zerovalent iron (NZVI) particles colloidally stabilized with 70,000 Da carboxymethyl cellulose (CMC), through sands with mean grain diameters of 180, 340 and 1140 µm (referred to as fine, intermediate and coarse-sized sand, respectively) was investigated in a 70-cm long, two-dimensional tank. The effect of NZVI concentrations (1 and 3 g-Fe L(-1)) and CMC concentrations (1 and 2 g L(-1)) and injection velocities (0.96 and 0.40 cm min(-1)) on particle transport were also evaluated with the intermediate sand. The overall NZVI mass fractions eluted from the tank were 36%, 25% and 16% in the coarse, intermediate and fine sands, respectively, when injected with 1 g L(-1) NZVI stabilized in 1 g L(-1) CMC. However, the mass fraction eluted reduced to 2.33% when the injection velocity was reduced from 0.96 to 0.40 cm min(-1) in the intermediate-sized sand. Maximum transport efficiency (38% NZVI mass eluted) in the intermediate-sized sand was achieved with 3 g L(-1) NZVI suspended in 2 g L(-1) CMC at an injection velocity of 0.96 cm min(-1). The transport efficiency was substantially decreased (11% NZVI mass eluted) when 3 g L(-1) NZVI was stabilized with only 1 g L(-1) CMC. The NZVI mean particle diameters in the porewaters remained unchanged at different locations in the tank suggesting that straining or gravity settling did not influence NZVI deposition. After NZVI injection, the hydraulic conductivity in the tank reduced by 80%-96%, depending on the CMC concentration and injection velocity.


Assuntos
Carboximetilcelulose Sódica/química , Ferro/química , Nanopartículas Metálicas/química , Solo/química , Tamanho da Partícula
13.
Environ Sci Technol ; 50(4): 1812-20, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26745244

RESUMO

Nanoscale zerovalent iron (NZVI) particles are often coated with polymeric surface modifiers for improved colloidal stability and transport during remediation of contaminated aquifers. Doping the NZVI surface with palladium (Pd-NZVI) increases its reactivity to pollutants such as trichloroethylene (TCE). In this study, we investigate the effects of coating Pd-NZVI with two surface modifiers of very different molecular size: rhamnolipid (RL, anionic biosurfactant, M.W. 600 g mol(-1)) and carboxymethylcellulose (CMC, anionic polyelectrolyte, M.W. 700 000 g mol(-1)) on TCE degradation. RL loadings of 13-133 mg TOC/g NZVI inhibited deposition of Pd in a concentration-dependent manner, thus limiting the number of available Pd sites and decreasing the TCE degradation reaction rate constant from 0.191 h(-1) to 0.027 h(-1). Furthermore, the presence of RL in solution had an additional inhibitory effect on the reactivity of Pd-NZVI by interacting with the exposed Pd deposits after they were formed. In contrast, CMC had no effect on reactivity at loadings up to 167 mg TOC/g NZVI. There was a lack of correlation between Pd-NZVI aggregate sizes and TCE reaction rates, and is explained by cryo-transmission electron microscopy images that show open, porous aggregate structures where TCE would be able to easily access Pd sites.


Assuntos
Carboximetilcelulose Sódica/química , Eletrólitos/química , Glicolipídeos/química , Nanopartículas Metálicas/química , Tensoativos/química , Tricloroetileno/química , Poluentes Químicos da Água/química , Ferro/química , Paládio/química , Eliminação de Resíduos Líquidos
14.
Chemosphere ; 144: 1398-407, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26498094

RESUMO

Direct injection of nanoscale zerovalent iron (NZVI) particles is being considered for remediation of contaminated sites. However, the transport characteristics of NZVI under horizontal flow conditions are not fully understood. In this study, NZVI particles were stabilized with carboxymethyl cellulose (CMC) and injected in vertical and horizontal columns to compare the effects of the flow direction on the transport. Columns were packed with sand of mean grain diameters of 180, 340 or 1140 µm (referred to as fine, intermediate and coarse sand, respectively), and were injected with CMC-NZVI suspensions of 0.3, 1 or 3 g Fe L(-1). Experimental breakthrough curves showed that with the coarse and intermediate sands, the steady-state effluent concentration in the horizontal column were up to 84% lower than those in the vertical column regardless of the initial NZVI concentration. However, in the fine sand the differences were insignificant, except at the highest NZVI particle concentration. Additionally, in the horizontally-oriented columns containing the coarse or intermediated sand, NZVI aggregates particles were non-uniformly distributed in the cross-section of the columns and there higher deposition in the bottom-half of the cross-section due to gravity effects. These deposition patterns can be accounted for, in part, by the gravitational settling of the large aggregates of NZVI, especially at high NZVI concentrations. A particle trajectory analysis in three dimensions demonstrated that under horizontal flow, gravity forces resulted in lower deposition of NZVI on the bottom-half of a single collector, as particles approaching the bottom-half of the collector were deflected by gravity to collectors below.


Assuntos
Água Subterrânea/análise , Ferro/análise , Nanopartículas Metálicas/análise , Movimentos da Água , Poluentes Químicos da Água/análise , Carboximetilcelulose Sódica/química , Tamanho da Partícula , Dióxido de Silício/química
15.
Evol Appl ; 8(9): 854-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26495039

RESUMO

The ability of populations to rapidly adapt to new environments will determine their future in an increasingly human-modified world. Although meta-analyses do frequently uncover signatures of local adaptation, they also reveal many exceptions. We suggest that particular constraints on local adaptation might arise when organisms are exposed to novel stressors, such as anthropogenic pollution. To inform this possibility, we studied the extent to which guppies (Poecilia reticulata) show local adaptation to oil pollution in southern Trinidad. Neutral genetic markers revealed that paired populations in oil-polluted versus not-polluted habitats diverged independently in two different watersheds. Morphometrics revealed some divergence (particularly in head shape) between these environments, some of which was parallel between rivers. Reciprocal transplant experiments in nature, however, found little evidence of local adaptation based on survival and growth. Moreover, subsequent laboratory experiments showed that the two populations from oil-polluted sites showed only weak local adaptation even when compared to guppies from oil-free northern Trinidad. We conclude that guppies show little local adaptation to oil pollution, which might result from the challenges associated with adaptation to particularly stressful environments. It might also reflect genetic drift owing to small population sizes and/or high gene flow between environments.

16.
Water Res ; 78: 144-53, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25935369

RESUMO

Direct injection of reactive nanoscale zerovalent iron particles (NZVI) is considered to be a promising approach for remediation of aquifers contaminated by chlorinated organic pollutants. In this study we show that the extent of sulfidation of NZVI enhances the rate of dechlorination of trichloroethylene (TCE) compared to that by unamended NZVI, and the enhancement depends on the Fe/S molar ratio. Experiments where TCE was reacted with NZVI sulfidated to different extents (Fe/S molar ratios 0.62-66) showed that the surface-area normalized first-order TCE degradation rate constant increased up to 40 folds compared to non-sulfidated NZVI. Fe/S ratios in the range of 12-25 provided the highest TCE dechlorination rates, and rates decreased at both higher and lower Fe/S. In contrast, sulfidated NZVI exposed to water in the absence of TCE showed significantly lower hydrogen evolution rate (2.75 µmol L(-1) h(-1)) compared to that by an unamended NZVI (6.92 µmol L(-1) h(-1)), indicating that sulfidation of NZVI suppressed corrosion reactions with water. Sulfide (HS(-)) ions reacted rapidly with NZVI and X-ray photoelectron spectroscopy analyses showed formation of a surface layer of FeS and FeS2. We propose that more electrons are preferentially conducted from sulfidated NZVI than from unamended NZVI to TCE, likely because of greater binding of TCE on the reactive sites of the iron sulfide outer layer. Resuspending sulfidated NZVI in sulfide-free or sulfide containing solutions altered the TCE degradation rate constants because of changes in the FeS layer thickness. Sulfidated NZVI maintained its high reactivity in the presence of multiple mono and divalent ions and with polyelectrolyte coatings. Thus, sulfide ions in groundwater can significantly alter NZVI reactivity.


Assuntos
Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Ferro/química , Nanopartículas Metálicas/química , Sulfetos/química , Tricloroetileno/metabolismo , Poluentes Químicos da Água/química
17.
Water Res ; 68: 354-63, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25462742

RESUMO

Direct in situ injection of palladium-doped nanosized zero valent iron (Pd-NZVI) particles can contribute to remediation of various environmental contaminants. A major challenge encountered is rapid aggregation of Pd-NZVI and hence very limited mobility. To reduce aggregation and concurrently improve particle mobility, the surface of bare Pd-NZVI can be modified with stabilizing surface modifiers. Selected surface-modified Pd-NZVI has shown dramatically improved stability and transport. However, little is known regarding the effects of aquifer grain geochemical heterogeneity on the transport and deposition behavior of surface-modified Pd-NZVI. Herein, the mobility of surface stabilized Pd-NZVI in two granular matrices representative of model ground water environments (quartz sand and loamy sand) was assessed over a wide range of environmentally relevant ionic strengths (IS). Carboxymethyl cellulose (CMC), soybean flour and rhamnolipid biosurfactant were used as Pd-NZVI surface modifiers. Our results show that, both in quartz sand and loamy sand, an increase in solution IS results in reduced Pd-NZVI transport. Moreover, at a given water chemistry, Pd-NZVI transport is notably attenuated in loamy sand implying that geochemical heterogeneity associated with loamy sand is a key factor influencing Pd-NZVI transport potential. Experiments conducted at a higher Pd-NZVI particle concentration, to be more representative of field conditions, show that rhamnolipid and CMC are effective stabilizing agents even when 1 g/L Pd-NZVI is injected into quartz sand. Overall, this study emphasizes the extent to which variation in groundwater chemistry, coupled with changes in aquifer geochemistry, could dramatically alter the transport potential of Pd-NZVI in the subsurface environment.


Assuntos
Glicolipídeos/química , Ferro/química , Nanopartículas Metálicas/química , Paládio/química , Carboximetilcelulose Sódica/química , Recuperação e Remediação Ambiental/métodos , Água Subterrânea , Concentração Osmolar , Quartzo , Solo/química , Glycine max/química , Propriedades de Superfície
18.
Water Res ; 50: 80-9, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24361705

RESUMO

In this study, the relevance of straining of nano-sized particles of zero valent iron coated with carboxymethyl cellulose (CMC-NZVI) during transport in model subsurface porous media is assessed. Although deposition of polyelectrolyte stabilized-NZVI on granular subsurface media due to physicochemical attachment processes has been reported previously, there is limited knowledge on the significance of the collector (sand) diameter on the deposition and spatial distribution of the retention of such nanoparticles. Experiments were conducted to assess the transport of CMC-NZVI in columns packed with four different-sized sands of mean diameter of 775 µm, 510 µm, 250 µm and 150 µm and at three different particle concentrations of 0.085 g L(-1), 0.35 g L(-1) and 1.70 g L(-1). CMC-NZVI effluent concentrations decreased with smaller sand diameters. High CMC-NZVI particle retention near the inlet, particularly for the finer sands was observed, even with a low ionic strength of 0.1 mM for the electrolyte medium. These observations are consistent with particle retention in porous media due to straining and/or wedging. Two colloid transport models, one considering particle retention by physicochemical deposition and detachment of those deposited particles, and the other considering particle retention by straining along with particle deposition and detachment, were fitted to the experimental data. The model accounting for straining shows a better fit, especially to the CMC-NZVI retention data along the length of the column. The straining rate coefficients decreased with larger sand diameters. This study demonstrates that CMC-NZVI particles, despite of their small size (hydrodynamic diameters of 167-185 nm and transmission electron microscopy imaged diameters of approximately 85 nm), may be removed by straining during transport, especially through fine granular subsurface media. The tailing effect, observed in the particle breakthrough curves, is attributed to detachment of deposited particles.


Assuntos
Eletrólitos/química , Ferro/química , Nanopartículas Metálicas/química , Movimento (Física) , Tamanho da Partícula , Carboximetilcelulose Sódica/química , Simulação por Computador , Porosidade , Dióxido de Silício
19.
Environ Sci Technol ; 47(23): 13355-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24237158

RESUMO

Palladium-doped nanosized zerovalent iron (Pd-NZVI) particles can contribute to the transformation of chlorinated solvents and various other contaminants into innocuous products. To make Pd-NZVI an effective in situ subsurface remediation agent, these particles need to migrate through a targeted contaminated area. However, previous studies have reported very limited mobility of these particles in the groundwater environment and attributed it to rapid aggregation and subsequent pore plugging. In this study, we systematically investigated the influence of selected natural and nontoxic organic macromolecules (carboxymethyl cellulose, rhamnolipid biosurfactants, and soy protein) on the aggregation and transport behavior of bare and coated Pd-NZVI. Aggregation behavior was investigated using dynamic light scattering by monitoring the evolution of hydrodynamic diameter as a function of time, whereas transport behavior was investigated by conducting water-saturated sand-packed column experiments. While bare Pd-NZVI is prone to rapid aggregation, we observed good colloidal stability and concurrent enhanced transport of Pd-NZVI coated with carboxymethyl cellulose, rhamnolipid biosurfactants, and soy protein. Each surface modifier performed well at lower ionic strength (IS) (10 mM NaHCO3), and one of the rhamnolipid surface modifiers (JBR215) significantly enhanced transport of 150 mg/L Pd-NZVI at concentrations as low as 10 mg/L total organic carbon. However, an increase in the solution IS induced significant Pd-NZVI aggregation with a simultaneous decrease in the transport potential in accordance with the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory of colloidal stability. Nonetheless, at the highest IS (300 mM NaHCO3) investigated, the mobility of rhamnolipid-coated Pd-NZVI is significantly higher than that of Pd-NZVI coated with the other surface modifiers, suggesting that biosurfactants may be the most suitable surface modifiers in field application. Overall, this study emphasizes how stabilization of Pd-NZVI with natural macromolecules such as rhamnolipids can improve the transport potential of these reactive nanoparticles in subsurface remediation applications at concentrations significantly lower than those of other commonly used polymers.


Assuntos
Glicolipídeos/química , Ferro/química , Nanopartículas Metálicas/química , Paládio/química , Proteínas de Soja/química , Carboximetilcelulose Sódica/química , Porosidade , Dióxido de Silício , Propriedades de Superfície , Água
20.
Water Res ; 46(6): 1735-44, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22244967

RESUMO

Transport and deposition of carboxymethyl cellulose (CMC)-modified nanoparticles of zero-valent iron (NZVI) were investigated in laboratory-scale sand packed columns. Aggregation resulted in a change in the particle size distribution (PSD) with time, and the changes in average particle size were determined by nanoparticle tracking analysis (NTA). The change in PSD over time was influenced by the CMC-NZVI concentration in suspension. A particle-particle attachment efficiency was evaluated by fitting an aggregation model with NTA data and subsequently used to predict changes in PSD over time. Changes in particle sizes over time led to corresponding changes in single-collector contact efficiencies, resulting in altered particle deposition rates over time. A coupled aggregation-colloid transport model was used to demonstrate how changes in PSD can reduce the transport of CMC-NZVI in column experiments. The effects of particle concentrations in the range of 0.07 g L(-1) to 0.725 g L(-1) on the transport in porous media were evaluated by comparing the elution profiles of CMC-NZVI from packed sand columns. Changes in PSD over time could reasonably account for a gradual increase in effluent concentration between 1 and 5 pore volumes (PVs). Processes such as detachment of deposited particles also likely contributed to the gradual increase in effluent concentrations. The particle-collector attachment efficiency increased with CMC-NZVI particle concentration due to a rise in dissolved Na(+) concentration with increased addition of Na-CMC. This inadvertent change in ionic strength led to decreased effluent concentrations at higher CMC-NZVI concentrations.


Assuntos
Carboximetilcelulose Sódica/química , Ferro/química , Nanopartículas Metálicas/química , Cinética , Modelos Químicos , Movimento (Física) , Tamanho da Partícula , Porosidade , Suspensões , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA