Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nat Commun ; 15(1): 4380, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782905

RESUMO

SLC22A10 is an orphan transporter with unknown substrates and function. The goal of this study is to elucidate its substrate specificity and functional characteristics. In contrast to orthologs from great apes, human SLC22A10, tagged with green fluorescent protein, is not expressed on the plasma membrane. Cells expressing great ape SLC22A10 orthologs exhibit significant accumulation of estradiol-17ß-glucuronide, unlike those expressing human SLC22A10. Sequence alignments reveal a proline at position 220 in humans, which is a leucine in great apes. Replacing proline with leucine in SLC22A10-P220L restores plasma membrane localization and uptake function. Neanderthal and Denisovan genomes show proline at position 220, akin to modern humans, indicating functional loss during hominin evolution. Human SLC22A10 is a unitary pseudogene due to a fixed missense mutation, P220, while in great apes, its orthologs transport sex steroid conjugates. Characterizing SLC22A10 across species sheds light on its biological role, influencing organism development and steroid homeostasis.


Assuntos
Primatas , Animais , Humanos , Sequência de Aminoácidos , Estradiol/metabolismo , Células HEK293 , Hominidae/genética , Hominidae/metabolismo , Mutação de Sentido Incorreto , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Primatas/genética , Pseudogenes , Especificidade por Substrato
2.
Pharmaceutics ; 16(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794309

RESUMO

The presence of mutagenic and carcinogenic N-nitrosamine impurities in medicinal products poses a safety risk. While incorporating antioxidants in formulations is a potential mitigation strategy, concerns arise regarding their interference with drug absorption by inhibiting intestinal drug transporters. Our study screened thirty antioxidants for inhibitory effects on key intestinal transporters-OATP2B1, P-gp, and BCRP in HEK-293 cells (OATP2B1) or membrane vesicles (P-gp, BCRP) using 3H-estrone sulfate, 3H-N-methyl quinidine, and 3H-CCK8 as substrates, respectively. The screen identified that butylated hydroxyanisole (BHA) and carnosic acid inhibited all three transporters (OATP2B1, P-gp, and BCRP), while ascorbyl palmitate (AP) inhibited OATP2B1 by more than 50%. BHA had IC50 values of 71 ± 20 µM, 206 ± 14 µM, and 182 ± 49 µM for OATP2B1, BCRP, and P-gp, respectively. AP exhibited IC50 values of 23 ± 10 µM for OATP2B1. The potency of AP and BHA was tested with valsartan, an OATP2B1 substrate, and revealed IC50 values of 26 ± 17 µM and 19 ± 11 µM, respectively, in HEK-293-OATP2B1 cells. Comparing IC50 values of AP and BHA with estimated intestinal concentrations suggests an unlikely inhibition of intestinal transporters at clinical concentrations of drugs formulated with antioxidants.

3.
Nat Chem Biol ; 20(1): 62-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37474759

RESUMO

Cells interpret a variety of signals through G-protein-coupled receptors (GPCRs) and stimulate the generation of second messengers such as cyclic adenosine monophosphate (cAMP). A long-standing puzzle is deciphering how GPCRs elicit different physiological responses despite generating similar levels of cAMP. We previously showed that some GPCRs generate cAMP from both the plasma membrane and the Golgi apparatus. Here we demonstrate that cardiomyocytes distinguish between subcellular cAMP inputs to elicit different physiological outputs. We show that generating cAMP from the Golgi leads to the regulation of a specific protein kinase A (PKA) target that increases the rate of cardiomyocyte relaxation. In contrast, cAMP generation from the plasma membrane activates a different PKA target that increases contractile force. We further validated the physiological consequences of these observations in intact zebrafish and mice. Thus, we demonstrate that the same GPCR acting through the same second messenger regulates cardiac contraction and relaxation dependent on its subcellular location.


Assuntos
Transdução de Sinais , Peixe-Zebra , Camundongos , Animais , AMP Cíclico/metabolismo , Sistemas do Segundo Mensageiro , Miócitos Cardíacos , Receptores Acoplados a Proteínas G/metabolismo
4.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 576-588, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38156758

RESUMO

Optimal treatment of infants with many renally cleared drugs must account for maturational differences in renal transporter (RT) activity. Pediatric physiologically-based pharmacokinetic (PBPK) models may incorporate RT activity, but this requires ontogeny profiles for RT activity in children, especially neonates, to predict drug disposition. Therefore, RT expression measurements from human kidney postmortem cortical tissue samples were normalized to represent a fraction of mature RT activity. Using these data, maximum likelihood estimated the distributions of RT activity across the pediatric age spectrum, including preterm and term neonates. PBPK models of four RT substrates (acyclovir, ciprofloxacin, furosemide, and meropenem) were evaluated with and without ontogeny profiles using average fold error (AFE), absolute average fold error (AAFE), and proportion of observations within the 5-95% prediction interval. Novel maximum likelihood profiles estimated ontogeny distributions for the following RT: OAT1, OAT3, OCT2, P-gp, URAT1, BCRP, MATE1, MRP2, MRP4, and MATE-2 K. Profiles for OAT3, P-gp, and MATE1 improved infant furosemide and neonate meropenem PBPK model AFE from 0.08 to 0.70 and 0.53 to 1.34 and model AAFE from 12.08 to 1.44 and 2.09 to 1.36, respectively, and improved the percent of data within the 5-95% prediction interval from 48% to 98% for neonatal ciprofloxacin simulations, respectively. Even after accounting for other critical population-specific maturational differences, novel RT ontogeny profiles substantially improved neonatal PBPK model performance, providing validated estimates of maturational differences in RT activity for optimal dosing in children.


Assuntos
Furosemida , Proteínas de Neoplasias , Lactente , Recém-Nascido , Criança , Humanos , Funções Verossimilhança , Meropeném , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Modelos Biológicos , Ciprofloxacina
5.
Clin Pharmacol Ther ; 111(5): 1007-1021, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35152405

RESUMO

Statins reduce cholesterol, prevent cardiovascular disease, and are among the most commonly prescribed medications in the world. Statin-associated musculoskeletal symptoms (SAMS) impact statin adherence and ultimately can impede the long-term effectiveness of statin therapy. There are several identified pharmacogenetic variants that impact statin disposition and adverse events during statin therapy. SLCO1B1 encodes a transporter (SLCO1B1; alternative names include OATP1B1 or OATP-C) that facilitates the hepatic uptake of all statins. ABCG2 encodes an efflux transporter (BCRP) that modulates the absorption and disposition of rosuvastatin. CYP2C9 encodes a phase I drug metabolizing enzyme responsible for the oxidation of some statins. Genetic variation in each of these genes alters systemic exposure to statins (i.e., simvastatin, rosuvastatin, pravastatin, pitavastatin, atorvastatin, fluvastatin, lovastatin), which can increase the risk for SAMS. We summarize the literature supporting these associations and provide therapeutic recommendations for statins based on SLCO1B1, ABCG2, and CYP2C9 genotype with the goal of improving the overall safety, adherence, and effectiveness of statin therapy. This document replaces the 2012 and 2014 Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for SLCO1B1 and simvastatin-induced myopathy.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Citocromo P-450 CYP2C9/genética , Genótipo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Proteínas de Neoplasias/genética , Farmacogenética , Rosuvastatina Cálcica/efeitos adversos , Sinvastatina/efeitos adversos
6.
Diabetes Care ; 44(12): 2673-2682, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607834

RESUMO

OBJECTIVE: Sulfonylureas, the first available drugs for the management of type 2 diabetes, remain widely prescribed today. However, there exists significant variability in glycemic response to treatment. We aimed to establish heritability of sulfonylurea response and identify genetic variants and interacting treatments associated with HbA1c reduction. RESEARCH DESIGN AND METHODS: As an initiative of the Metformin Genetics Plus Consortium (MetGen Plus) and the DIabetes REsearCh on patient straTification (DIRECT) consortium, 5,485 White Europeans with type 2 diabetes treated with sulfonylureas were recruited from six referral centers in Europe and North America. We first estimated heritability using the generalized restricted maximum likelihood approach and then undertook genome-wide association studies of glycemic response to sulfonylureas measured as HbA1c reduction after 12 months of therapy followed by meta-analysis. These results were supported by acute glipizide challenge in humans who were naïve to type 2 diabetes medications, cis expression quantitative trait loci (eQTL), and functional validation in cellular models. Finally, we examined for possible drug-drug-gene interactions. RESULTS: After establishing that sulfonylurea response is heritable (mean ± SEM 37 ± 11%), we identified two independent loci near the GXYLT1 and SLCO1B1 genes associated with HbA1c reduction at a genome-wide scale (P < 5 × 10-8). The C allele at rs1234032, near GXYLT1, was associated with 0.14% (1.5 mmol/mol), P = 2.39 × 10-8), lower reduction in HbA1c. Similarly, the C allele was associated with higher glucose trough levels (ß = 1.61, P = 0.005) in healthy volunteers in the SUGAR-MGH given glipizide (N = 857). In 3,029 human whole blood samples, the C allele is a cis eQTL for increased expression of GXYLT1 (ß = 0.21, P = 2.04 × 10-58). The C allele of rs10770791, in an intronic region of SLCO1B1, was associated with 0.11% (1.2 mmol/mol) greater reduction in HbA1c (P = 4.80 × 10-8). In 1,183 human liver samples, the C allele at rs10770791 is a cis eQTL for reduced SLCO1B1 expression (P = 1.61 × 10-7), which, together with functional studies in cells expressing SLCO1B1, supports a key role for hepatic SLCO1B1 (encoding OATP1B1) in regulation of sulfonylurea transport. Further, a significant interaction between statin use and SLCO1B1 genotype was observed (P = 0.001). In statin nonusers, C allele homozygotes at rs10770791 had a large absolute reduction in HbA1c (0.48 ± 0.12% [5.2 ± 1.26 mmol/mol]), equivalent to that associated with initiation of a dipeptidyl peptidase 4 inhibitor. CONCLUSIONS: We have identified clinically important genetic effects at genome-wide levels of significance, and important drug-drug-gene interactions, which include commonly prescribed statins. With increasing availability of genetic data embedded in clinical records these findings will be important in prescribing glucose-lowering drugs.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Funções Verossimilhança , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Metformina/uso terapêutico , Compostos de Sulfonilureia/uso terapêutico
7.
Clin Transl Sci ; 14(4): 1431-1443, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33931953

RESUMO

The missense variant, breast cancer resistance protein (BCRP) p.Q141K, which encodes a reduced function BCRP, has been linked to poor response to allopurinol. Using a multifaceted approach, we aimed to characterize the relationship(s) between BCRP p.Q141K, the pharmacokinetics (PK) and pharmacodynamics (PD) of oxypurinol (the active metabolite of allopurinol), and serum uric acid (SUA) levels. A prospective clinical study (NCT02956278) was conducted in which healthy volunteers were given a single oral dose of 300 mg allopurinol followed by intensive blood sampling. Data were analyzed using noncompartmental analysis and population PK/PD modeling. Additionally, electronic health records were analyzed to investigate whether clinical inhibitors of BCRP phenocopied the effects of the p.Q141K variant with respect to SUA. Subjects homozygous for p.Q141K had a longer half-life (34.2 ± 12.2 h vs. 19.1 ± 1.42 h) of oxypurinol. The PK/PD model showed that women had a 24.8% lower volume of distribution. Baseline SUA was affected by p.Q141K genotype and renal function; that is, it changed by 48.8% for every 1 mg/dl difference in serum creatinine. Real-world data analyses showed that patients prescribed clinical inhibitors of BCRP have higher SUA levels than those that have not been prescribed inhibitors of BCRP, consistent with the idea that BCRP inhibitors phenocopy the effects of p.Q141K on uric acid levels. This study identified important covariates of oxypurinol PK/PD that could affect its efficacy for the treatment of gout as well as a potential side effect of BCRP inhibitors on increasing uric acid levels, which has not been described previously.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/genética , Oxipurinol/farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adolescente , Adulto , Creatinina/sangue , Creatinina/metabolismo , Feminino , Taxa de Filtração Glomerular , Meia-Vida , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Mutação de Sentido Incorreto , Proteínas de Neoplasias/metabolismo , Oxipurinol/administração & dosagem , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Eliminação Renal , Fatores Sexuais , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Adulto Jovem
8.
J Pharm Sci ; 110(1): 347-353, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910949

RESUMO

Human OAT1 and OAT3 play major roles in renal drug elimination and drug-drug interactions. However, there is little information on the interactions of drug metabolites with transporters. The goal of this study was to characterize the interactions of drug metabolites with OAT1 and OAT3 and compare their potencies of inhibition with those of their corresponding parent drugs. Using HEK293 cells stably transfected with OAT1 and OAT3, 25 drug metabolites and their corresponding parent drugs were screened for inhibitory effects on OAT1-and OAT3-mediated 6-carboxyfluorescein uptake at a screening concentration of 200 µM for all but 3 compounds. 20 and 24 drug metabolites were identified as inhibitors (inhibition > 50%) of OAT1 and OAT3, respectively. Seven drug metabolites were potent inhibitors of either or both OAT1 and OAT3 with Ki values less than 1 µM. 22 metabolites were more potent inhibitors of OAT3 than OAT1. Importantly, one drug and four metabolites were predicted to inhibit OAT3 at unbound plasma concentrations achieved clinically (Cmax,u/Ki values ≥ 0.1). In conclusion, our study highlights the potential interactions of drug metabolites with OAT1 and OAT3 at clinically relevant concentrations, suggesting that drug metabolites may modulate therapeutic and adverse drug response by inhibiting renal drug transporters.


Assuntos
Transportadores de Ânions Orgânicos , Preparações Farmacêuticas , Células HEK293 , Humanos , Proteína 1 Transportadora de Ânions Orgânicos , Transportadores de Ânions Orgânicos Sódio-Independentes
9.
Proc Natl Acad Sci U S A ; 117(27): 16009-16018, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571913

RESUMO

Food and drug products contain diverse and abundant small-molecule additives (excipients) with unclear impacts on human physiology, drug safety, and response. Here, we evaluate their potential impact on intestinal drug absorption. By screening 136 unique compounds for inhibition of the key intestinal transporter OATP2B1 we identified and validated 24 potent OATP2B1 inhibitors, characterized by higher molecular weight and hydrophobicity compared to poor or noninhibitors. OATP2B1 inhibitors were also enriched for dyes, including 8 azo (R-N=N-R') dyes. Pharmacokinetic studies in mice confirmed that FD&C Red No. 40, a common azo dye excipient and a potent inhibitor of OATP2B1, decreased the plasma level of the OATP2B1 substrate fexofenadine, suggesting that FD&C Red No. 40 has the potential to block drug absorption through OATP2B1 inhibition in vivo. However, the gut microbiomes of multiple unrelated healthy individuals as well as diverse human gut bacterial isolates were capable of inactivating the identified azo dye excipients, producing metabolites that no longer inhibit OATP2B1 transport. These results support a beneficial role for the microbiome in limiting the unintended effects of food and drug additives in the intestine and provide a framework for the data-driven selection of excipients. Furthermore, the ubiquity and genetic diversity of gut bacterial azoreductases coupled to experiments in conventionally raised and gnotobiotic mice suggest that variations in gut microbial community structure may be less important to consider relative to the high concentrations of azo dyes in food products, which have the potential to saturate gut bacterial enzymatic activity.


Assuntos
Bactérias/metabolismo , Excipientes/metabolismo , Aditivos Alimentares/metabolismo , Alimentos , Microbioma Gastrointestinal/fisiologia , Absorção Intestinal/fisiologia , Transportadores de Ânions Orgânicos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Antialérgicos/metabolismo , Antialérgicos/farmacocinética , Compostos Azo , Bactérias/isolamento & purificação , Excipientes/farmacocinética , Feminino , Aditivos Alimentares/farmacocinética , Antagonistas não Sedativos dos Receptores H1 da Histamina/metabolismo , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacocinética , Humanos , Absorção Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Terfenadina/análogos & derivados , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
10.
Mol Pharm ; 17(3): 748-756, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31990564

RESUMO

Mechanistic-understanding-based selection of excipients may improve formulation development strategies for generic drug products and potentially accelerate their approval. Our study aimed at investigating the effects of molecular excipients present in orally administered FDA-approved drug products on the intestinal efflux transporter, BCRP (ABCG2), which plays a critical role in drug absorption with potential implications on drug safety and efficacy. We determined the interactions of 136 oral molecular excipients with BCRP in isolated membrane vesicles and identified 26 excipients as BCRP inhibitors with IC50 values less than 5 µM using 3H-cholecystokinin octapeptide (3H-CCK8). These BCRP inhibitors belonged to three functional categories of excipients: dyes, surfactants, and flavoring agents. Compared with noninhibitors, BCRP inhibitors had significantly higher molecular weights and SLogP values. The inhibitory effects of excipients identified in membrane vesicles were also evaluated in BCRP-overexpressing HEK293 cells at similar concentrations. Only 1 of the 26 inhibitors of BCRP identified in vesicles inhibited BCRP-mediated 3H-oxypurinol uptake by more than 50%, consistent with the notion that BCRP inhibition depends on transmembrane or intracellular availability of the inhibitors. Collectively, the results of this study provide new information on excipient selection during the development of drug products with active pharmaceutical ingredients that are BCRP substrates.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Corantes/metabolismo , Excipientes/metabolismo , Aromatizantes/metabolismo , Proteínas de Neoplasias/metabolismo , Tensoativos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Administração Oral , Corantes/química , Corantes/farmacologia , Composição de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Excipientes/química , Excipientes/farmacologia , Feminino , Aromatizantes/química , Aromatizantes/farmacologia , Células HEK293 , Humanos , Concentração Inibidora 50 , Absorção Intestinal/efeitos dos fármacos , Peso Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Transdução de Sinais/genética , Tensoativos/química , Tensoativos/farmacologia , Transfecção
11.
Bioorg Med Chem Lett ; 29(16): 2254-2258, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31248771

RESUMO

A series of 1,2,3-triazole analogs of the amino acids l-histidine and l-tryptophan were modeled, synthesized and tested for l-type amino acid transporter 1 (LAT1; SLC7A5) activity to guide the design of amino acid-drug conjugates (prodrugs). These triazoles were conveniently prepared by the highly convergent Huisgen 1,3-dipolar cycloaddition (Click Chemistry). Despite comparable predicted binding modes, triazoles generally demonstrated reduced cell uptake and LAT1 binding potency relative to their natural amino acid counterparts. The structure-activity relationship (SAR) data for these triazoles has important ramifications for treating cancer and brain disorders using amino acid prodrugs or LAT1 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Histidina/farmacologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias/tratamento farmacológico , Pró-Fármacos/farmacologia , Triazóis/farmacologia , Triptofano/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Encefalopatias/tratamento farmacológico , Encefalopatias/metabolismo , Química Click , Relação Dose-Resposta a Droga , Histidina/química , Humanos , Estrutura Molecular , Neoplasias/metabolismo , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Triptofano/química
12.
Clin Pharmacol Ther ; 106(5): 1083-1092, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31127606

RESUMO

Human renal membrane transporters play key roles in the disposition of renally cleared drugs and endogenous substrates, but their ontogeny is largely unknown. Using 184 human postmortem frozen renal cortical tissues (preterm newborns to adults) and a subset of 62 tissue samples, we measured the mRNA levels of 11 renal transporters and the transcription factor pregnane X receptor (PXR) with quantitative real-time polymerase chain reaction, and protein abundance of nine transporters using liquid chromatography tandem mass spectrometry selective reaction monitoring, respectively. Expression levels of p-glycoprotein, urate transporter 1, organic anion transporter 1, organic anion transporter 3, and organic cation transporter 2 increased with age. Protein levels of multidrug and toxin extrusion transporter 2-K and breast cancer resistance protein showed no difference from newborns to adults, despite age-related changes in mRNA expression. Multidrug and toxin extrusion transporter 1, glucose transporter 2, multidrug resistance-associated protein 2, multidrug resistance-associated protein 4 (MRP4), and PXR expression levels were stable. Using immunohistochemistry, we found that MRP4 localization in pediatric samples was similar to that in adult samples. Collectively, our study revealed that renal drug transporters exhibited different rates and patterns of maturation, suggesting that renal handling of substrates may change with age.


Assuntos
Córtex Renal/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Receptor de Pregnano X/metabolismo , Proteômica/métodos , RNA Mensageiro/biossíntese , Adolescente , Adulto , Fatores Etários , Idoso , Criança , Pré-Escolar , Cromatografia Líquida , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Adulto Jovem
13.
Hum Mutat ; 40(7): 983-995, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30950137

RESUMO

Deleterious variants in SLC2A2 cause Fanconi-Bickel Syndrome (FBS), a glycogen storage disorder, whereas less common variants in SLC2A2 associate with numerous metabolic diseases. Phenotypic heterogeneity in FBS has been observed, but its causes remain unknown. Our goal was to functionally characterize rare SLC2A2 variants found in FBS and metabolic disease-associated variants to understand the impact of these variants on GLUT2 activity and expression and establish genotype-phenotype correlations. Complementary RNA-injected Xenopus laevis oocytes were used to study mutant transporter activity and membrane expression. GLUT2 homology models were constructed for mutation analysis using GLUT1, GLUT3, and XylE as templates. Seventeen FBS variants were characterized. Only c.457_462delCTTATA (p.Leu153_Ile154del) exhibited residual glucose uptake. Functional characterization revealed that only half of the variants were expressed on the plasma membrane. Most less common variants (except c.593 C>A (p.Thr198Lys) and c.1087 G>T (p.Ala363Ser)) exhibited similar GLUT2 transport activity as the wild type. Structural analysis of GLUT2 revealed that variants affect substrate-binding, steric hindrance, or overall transporter structure. The mutant transporter that is associated with a milder FBS phenotype, p.Leu153_Ile154del, retained transport activity. These results improve our overall understanding of the underlying causes of FBS and impact of GLUT2 function on various clinical phenotypes ranging from rare to common disease.


Assuntos
Síndrome de Fanconi/genética , Transportador de Glucose Tipo 2/química , Transportador de Glucose Tipo 2/metabolismo , Mutação , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Síndrome de Fanconi/metabolismo , Feminino , Estudos de Associação Genética , Glucose/metabolismo , Transportador de Glucose Tipo 2/genética , Humanos , Modelos Moleculares , Oócitos/metabolismo , Xenopus
14.
Clin Transl Sci ; 12(4): 388-399, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30982223

RESUMO

Understanding transporter-mediated drug-drug interactions is an integral part of risk assessment in drug development. Recent studies support the use of hexadecanedioate (HDA), tetradecanedioate (TDA), coproporphyrin (CP)-I, and CP-III as clinical biomarkers for evaluating organic anion-transporting polypeptide (OATP)1B1 (SLCO1B1) inhibition. The current study investigated the effect of OATP1B1 genotype c.521T>C (OATP1B1-Val174Ala) on the extent of interaction between cyclosporin A (CsA) and pravastatin, and associated endogenous biomarkers of the transporter (HDA, TDA, CP-I, and CP-III), in 20 healthy volunteers. The results show that the levels of each clinical biomarker and pravastatin were significantly increased in plasma samples of the volunteers following administration of pravastatin plus CsA compared with pravastatin plus placebo. The overall fold change in the area under the concentration-time curve (AUC) and maximum plasma concentration (Cmax ) was similar among the four biomarkers (1.8-2.5-fold, paired t-test P value < 0.05) in individuals who were homozygotes or heterozygotes of the major allele, c.521T. However, the fold change in AUC and Cmax for HDA and TDA was significantly abolished in the subjects who were c.521-CC, whereas the respective fold change in AUC and Cmax for pravastatin and CP-I and CP-III were slightly weaker in individuals who were c.521-CC compared with c.521-TT/TC genotypes. In addition, this study provides the first evidence that SLCO1B1 c.521T>C genotype is significantly associated with CP-I but not CP-III levels. Overall, these results suggest that OATP1B1 genotype can modulate the effects of CsA on biomarker levels; the extent of modulation differs among the biomarkers.


Assuntos
Interações Medicamentosas , Voluntários Saudáveis , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Área Sob a Curva , Biomarcadores/sangue , Coproporfirinas/sangue , Ciclosporina/administração & dosagem , Feminino , Heterozigoto , Humanos , Masculino , Pravastatina/sangue , Pravastatina/farmacocinética
15.
Clin Pharmacol Ther ; 106(3): 623-631, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30924126

RESUMO

Allopurinol, which lowers uric acid (UA) concentration, is increasingly being recognized for its benefits in cardiovascular and renal disease. However, response to allopurinol is variable. We gathered samples from 4,446 multiethnic subjects for a genome-wide association study of allopurinol response. Consistent with previous studies, we observed that the Q141K variant in ABCG2 (rs2231142), which encodes the efflux pump breast cancer resistance protein (BCRP), associated with worse response to allopurinol. However, for the first time this association reached genome-wide level significance (P = 8.06 × 10-11 ). Additionally, we identified a novel association with a variant in GREM2 (rs1934341, P = 3.22 × 10-6 ). In vitro studies identified oxypurinol, the active metabolite of allopurinol, as an inhibitor of the UA transporter GLUT9, suggesting that oxypurinol may modulate UA reabsorption. These results provide strong evidence for a role of BCRP Q141K in allopurinol response, and suggest that allopurinol may have additional hypouricemic effects beyond xanthine oxidase inhibition.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Alopurinol/farmacologia , Proteínas de Neoplasias/genética , Ácido Úrico/metabolismo , Idoso , Idoso de 80 Anos ou mais , Citocinas/genética , Etnicidade , Feminino , Estudo de Associação Genômica Ampla , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Humanos , Masculino , Pessoa de Meia-Idade , Oxipurinol/farmacologia , Prognóstico
16.
PLoS Biol ; 17(1): e2006571, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30653498

RESUMO

Beiging of white adipose tissue (WAT) is a particularly appealing target for therapeutics in the treatment of metabolic diseases through norepinephrine (NE)-mediated signaling pathways. Although previous studies report NE clearance mechanisms via SLC6A2 on sympathetic neurons or proinflammatory macrophages in adipose tissues (ATs), the low catecholamine clearance capacity of SLC6A2 may limit the cleaning efficiency. Here, we report that mouse organic cation transporter 3 (Oct3; Slc22a3) is highly expressed in WAT and displays the greatest uptake rate of NE as a selective non-neural route of NE clearance in white adipocytes, which differs from other known routes such as adjacent neurons or macrophages. We further show that adipocytes express high levels of NE degradation enzymes Maoa, Maob, and Comt, providing the molecular basis on NE clearance by adipocytes together with its reuptake transporter Oct3. Under NE administration, ablation of Oct3 induces higher body temperature, thermogenesis, and lipolysis compared with littermate controls. After prolonged cold challenge, inguinal WAT (ingWAT) in adipose-specific Oct3-deficient mice shows much stronger browning characteristics and significantly elevated expression of thermogenic and mitochondrial biogenesis genes than in littermate controls, and this response involves enhanced ß-adrenergic receptor (ß-AR)/protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP)-responsive element binding protein (Creb) pathway activation. Glycolytic genes are reprogrammed to significantly higher levels to compensate for the loss of ATP production in adipose-specific Oct3 knockout (KO) mice, indicating the fundamental role of glucose metabolism during beiging. Inhibition of ß-AR largely abolishes the higher lipolytic and thermogenic activities in Oct3-deficient ingWAT, indicating the NE overload in the vicinity of adipocytes in Oct3 KO adipocytes. Of note, reduced functional alleles in human OCT3 are also identified to be associated with increased basal metabolic rate (BMR). Collectively, our results demonstrate that Oct3 governs ß-AR activity as a NE recycling transporter in white adipocytes, offering potential therapeutic applications for metabolic disorders.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Catecolaminas/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Metabolismo Energético , Células HEK293 , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Obesidade/metabolismo , Fator 3 de Transcrição de Octâmero/biossíntese , Fator 3 de Transcrição de Octâmero/genética , Proteínas de Transporte de Cátions Orgânicos/biossíntese , Proteínas de Transporte de Cátions Orgânicos/genética , Transdução de Sinais , Termogênese/fisiologia
17.
Clin Pharmacol Ther ; 104(5): 890-899, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30091177

RESUMO

This white paper provides updated International Transporter Consortium (ITC) recommendations on transporters that are important in drug development following the 3rd ITC workshop. New additions include prospective evaluation of organic cation transporter 1 (OCT1) and retrospective evaluation of organic anion transporting polypeptide (OATP)2B1 because of their important roles in drug absorption, disposition, and effects. For the first time, the ITC underscores the importance of transporters involved in drug-induced vitamin deficiency (THTR2) and those involved in the disposition of biomarkers of organ function (OAT2 and bile acid transporters).


Assuntos
Desenvolvimento de Medicamentos/métodos , Moduladores de Transporte de Membrana/farmacologia , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo , Farmacocinética , Animais , Interações Medicamentosas , Humanos , Moduladores de Transporte de Membrana/metabolismo , Modelos Biológicos , Medição de Risco
18.
J Med Chem ; 61(16): 7358-7373, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30048132

RESUMO

The L-type amino acid transporter 1 (LAT1, SLC7A5) transports essential amino acids across the blood-brain barrier (BBB) and into cancer cells. To utilize LAT1 for drug delivery, potent amino acid promoieties are desired, as prodrugs must compete with millimolar concentrations of endogenous amino acids. To better understand ligand-transporter interactions that could improve potency, we developed structural LAT1 models to guide the design of substituted analogues of phenylalanine and histidine. Furthermore, we evaluated the structure-activity relationship (SAR) for both enantiomers of naturally occurring LAT1 substrates. Analogues were tested in cis-inhibition and trans-stimulation cell assays to determine potency and uptake rate. Surprisingly, LAT1 can transport amino acid-like substrates with wide-ranging polarities including those containing ionizable substituents. Additionally, the rate of LAT1 transport was generally nonstereoselective even though enantiomers likely exhibit different binding modes. Our findings have broad implications to the development of new treatments for brain disorders and cancer.


Assuntos
Transportador 1 de Aminoácidos Neutros Grandes/química , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Relação Estrutura-Atividade , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/metabolismo , Antiporters/química , Antiporters/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/genética , Ligantes , Simulação de Acoplamento Molecular , Fenilalanina/química , Fenilalanina/metabolismo , Estereoisomerismo , Homologia Estrutural de Proteína , Especificidade por Substrato
19.
Clin Pharmacol Ther ; 104(5): 781-784, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29761830

RESUMO

Metformin drug-drug interaction (DDI) studies are conducted during development of drugs that inhibit organic cation transporters and/or multidrug and toxin extrusion proteins (OCTs/MATEs). Monitoring solely changes in systemic exposure, the typical DDI study endpoint appears inadequate for metformin, which is metabolically stable, has poor passive membrane permeability, and undergoes transporter-mediated tissue distribution and clearance. Evaluation of renal clearance, antihyperglycemic effects, and potentially lactate as an exploratory safety marker, can support rational metformin dose adjustment. The proposed DDI study design aims to adequately inform metformin dosing during comedication.


Assuntos
Desenvolvimento de Medicamentos/métodos , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Projetos de Pesquisa , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Simulação por Computador , Relação Dose-Resposta a Droga , Cálculos da Dosagem de Medicamento , Interações Medicamentosas , Teste de Tolerância a Glucose , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/farmacocinética , Ácido Láctico/sangue , Metformina/efeitos adversos , Metformina/farmacocinética , Modelos Biológicos , Farmacogenética , Polimedicação , Eliminação Renal , Medição de Risco
20.
Clin Pharmacol Ther ; 103(2): 233-242, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29023674

RESUMO

Reverse translational research takes a bedside-to-bench approach, using sophisticated basic research to explain the biological mechanisms behind observed clinical data. For transporters, which play a role in human disease and drug response, this approach offers a distinct advantage over the typical translational research, which often falters due to inadequate in vitro and preclinical animal models. Research on ABCG2, which encodes the Breast Cancer Resistance Protein, has benefited immensely from a reverse translational approach due to its broad implications for disease susceptibility and both therapeutic and adverse drug response. In this review, we describe the success of reverse translational research for ABCG2 and opportunities for further studies.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/uso terapêutico , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Medicina Baseada em Evidências/métodos , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Pesquisa Translacional Biomédica/métodos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Mineração de Dados , Bases de Dados Factuais , Resistencia a Medicamentos Antineoplásicos , Humanos , Modelos Animais , Modelos Teóricos , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Segurança do Paciente , Variantes Farmacogenômicos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA