Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Hum Genet ; 69(1): 53-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37697026

RESUMO

Heterozygous deleterious variants in SKI cause Shprintzen-Goldberg Syndrome, which is mainly characterized by craniofacial features, neurodevelopmental disorder and thoracic aorta dilatations/aneurysms. The encoded protein is a member of the transforming growth factor beta signaling. Paucity of reported studies exploring the SGS molecular pathogenesis hampers disease recognition and clinical interpretation of private variants. Here, the unpublished c.349G>A, p.[Gly117Ser] and the recurrent c.539C>T, p.[Thr180Met] SKI variants were studied combining in silico and in vitro approach. 3D comparative modeling and calculation of the interaction energy predicted that both variants alter the SKI tertiary protein structure and its interactions. Computational data were functionally corroborated by the demonstration of an increase of MAPK phosphorylation levels and alteration of cell cycle in cells expressing the mutant SKI. Our findings confirmed the effects of SKI variants on MAPK and opened the path to study the role of perturbations of the cell cycle in SGS.


Assuntos
Síndrome de Marfan , Simulação de Dinâmica Molecular , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ciclo Celular/genética , Fator de Crescimento Transformador beta
2.
Sci Rep ; 13(1): 21199, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040752

RESUMO

Notch signaling is an evolutionary conserved pathway with a key role in tissue homeostasis, differentiation and proliferation. It was reported that Notch1 receptor negatively regulates mouse osteoclast development and formation by inhibiting the expression of macrophage colony-stimulating factor in mesenchymal cells. Nonetheless, the involvement of Notch1 pathway in the generation of human osteoclasts is still controversial. Here, we report that the constitutive activation of Notch1 signaling induced a differentiation block in human mononuclear CD14+ cells directly isolated from peripheral blood mononuclear cells (PBMCs) upon in vitro stimulation to osteoclasts. Additionally, using a combined approach of single-cell RNA sequencing (scRNA-Seq) simultaneously with a panel of 31 oligo-conjugated antibodies against cell surface markers (AbSeq assay) as well as unsupervised learning methods, we detected four different cell stages of human RANKL-induced osteoclastogenesis after 5 days in which Notch1 signaling enforces the cell expansion of specific subsets. These cell populations were characterized by distinct gene expression and immunophenotypic profiles and active Notch1, JAK/STAT and WNT signaling pathways. Furthermore, cell-cell communication analyses revealed extrinsic modulators of osteoclast progenitors including the IL7/IL7R and WNT5a/RYK axes. Interestingly, we also report that Interleukin-7 receptor (IL7R) was a downstream effector of Notch1 pathway and that Notch1 and IL7R interplay promoted cell expansion of human RANKL-induced osteoclast progenitors. Taken together, these findings underline a novel cell pattern of human osteoclastogenesis, outlining the key role of Notch1 and IL-7R signaling pathways.


Assuntos
Leucócitos Mononucleares , Osteogênese , Humanos , Diferenciação Celular , Osteoclastos/metabolismo , Ligante RANK/farmacologia , Ligante RANK/metabolismo , Transdução de Sinais
3.
Cells ; 12(22)2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37998389

RESUMO

Inflammatory bowel diseases (IBDs) are characterized by a persistent low-grade inflammation that leads to an increased risk of colorectal cancer (CRC) development. Several factors are implicated in this pathogenetic pathway, such as innate and adaptive immunity, gut microbiota, environment, and xenobiotics. At the gut mucosa level, a complex interplay between the immune system and gut microbiota occurs; a disequilibrium between these two factors leads to an alteration in the gut permeability, called 'leaky gut'. Subsequently, an activation of several inflammatory pathways and an alteration of gut microbiota composition with a proliferation of pro-inflammatory bacteria, known as 'pathobionts', take place, leading to a further increase in inflammation. This narrative review provides an overview on the principal Pattern Recognition Receptors (PRRs), including Toll-like receptors (TLRs) and NOD-like receptors (NLRs), focusing on their recognition mechanisms, signaling pathways, and contributions to immune responses. We also report the genetic polymorphisms of TLRs and dysregulation of NLR signaling pathways that can influence immune regulation and contribute to the development and progression of inflammatory disease and cancer.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Neoplasias , Humanos , Imunidade Inata , Inflamação , Receptores Toll-Like/metabolismo
4.
Biomark Res ; 11(1): 92, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37858274

RESUMO

T-cell lymphoblastic acute leukemia (T-ALL) is an aggressive blood cancer, characterized by restricted cellular subsets with enriched leukemia initiating cells (LICs). Recently, Ephrin receptors (Eph) were described to be highly expressed in cancer stem cells. Here, using public RNA-Seq datasets of human T-ALL, we reported that EphB6 was the only member within the Eph family overexpressed in over 260 samples. We also found the highest level of EphB6 in a minor cell subpopulation within bulk tumors of patient-derived xenografts, obtained through the injection of primary patient biopsy material into immunocompromised NOD-Scid/IL2Rγc-/- (NSG) mice. Interestingly, this EphB6 positive (EphB6+) subset showed an enriched LIC activity after in vivo transplantation into NSG mice. Additionally, gene expression data at the single-cell level of primary patients' leukemic cells revealed that EphB6 + cells were significantly selected in minimal residual disease up to 30 days from the standard treatments and characterized by high levels of markers related to cell proliferation and poor clinical outcome, such as CCNB1 and KIF20A. Taken together, our data suggest that EphB6 supports LICs' maintenance and progression in T-ALL and, thus, targeting EphB6 + cells could be therapeutically relevant for the treatment of T-ALL patients.

5.
J Exp Clin Cancer Res ; 42(1): 218, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620852

RESUMO

BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy, characterized by restricted cellular subsets with asymmetrically enriched leukemia initiating cell (LIC) activity. Nonetheless, it is still unclear which signaling programs promote LIC maintenance and progression. METHODS: Here, we evaluated the role of the biological clock in the regulation of the molecular mechanisms and signaling pathways impacting the cellular dynamics in T-ALL through an integrated experimental approach including gene expression profiling of shRNA-modified T-ALL cell lines and Chromatin Immunoprecipitation Sequencing (ChIP-Seq) of leukemic cells. Patient-derived xenograft (PDXs) cell subsets were also genetically manipulated in order to assess the LIC activity modulated by the loss of biological clock in human T-ALL. RESULTS: We report that the disruption of the circadian clock circuitry obtained through shRNA-mediated knockdown of CLOCK and BMAL1 genes negatively impacted the growth in vitro as well as the activity in vivo of LIC derived from PDXs after transplantation into immunodeficient recipient mice. Additionally, gene expression data integrated with ChIP-Seq profiles of leukemic cells revealed that the circadian clock directly promotes the expression of genes, such as IL20RB, crucially involved in JAK/STAT signaling, making the T-ALL cells more responsive to Interleukin 20 (IL20). CONCLUSION: Taken together, our data support the concept that the biological clock drives the expression of IL20R prompting JAK/STAT signaling and promoting LIC activity in T-ALL and suggest that the selective targeting of circadian components could be therapeutically relevant for the treatment of T-ALL patients.


Assuntos
Relógios Circadianos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animais , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transdução de Sinais , Modelos Animais de Doenças , RNA Interferente Pequeno , Linfócitos T
6.
Blood ; 141(13): 1597-1609, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36315912

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a T-cell malignancy characterized by cell subsets and enriched with leukemia-initiating cells (LICs). ß-Catenin modulates LIC activity in T-ALL. However, its role in maintaining established leukemia stem cells remains largely unknown. To identify functionally relevant protein interactions of ß-catenin in T-ALL, we performed coimmunoprecipitation followed by liquid chromatography-mass spectrometry. Here, we report that a noncanonical functional interaction of ß-catenin with the Forkhead box O3 (FOXO3) transcription factor positively regulates LIC-related genes, including the cyclin-dependent kinase 4, which is a crucial modulator of cell cycle and tumor maintenance. We also confirm the relevance of these findings using stably integrated fluorescent reporters of ß-catenin and FOXO3 activity in patient-derived xenografts, which identify minor subpopulations with enriched LIC activity. In addition, gene expression data at the single-cell level of leukemic cells of primary patients at the time of diagnosis and minimal residual disease (MRD) up to 30 days after the standard treatments reveal that the expression of ß-catenin- and FOXO3-dependent genes is present in the CD82+CD117+ cell fraction, which is substantially enriched with LICs in MRD as well as in early T-cell precursor ALL. These findings highlight key functional roles for ß-catenin and FOXO3 and suggest novel therapeutic strategies to eradicate aggressive cell subsets in T-ALL.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , beta Catenina , Humanos , beta Catenina/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia
7.
Mol Cancer ; 21(1): 226, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550553

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive T-cell malignancy characterized by genotypically-defined and phenotypically divergent cell populations, governed by adaptive landscapes. Clonal expansions are associated to genetic and epigenetic events, and modulation of external stimuli that affect the hierarchical structure of subclones and support the dynamics of leukemic subsets. Recently, small extracellular vesicles (sEV) such as exosomes were also shown to play a role in leukemia. Here, by coupling miRNome, bulk and single cell transcriptome profiling, we found that T-ALL-secreted sEV contain NOTCH1-dependent microRNAs (EV-miRs), which control oncogenic pathways acting as autocrine stimuli and ultimately promoting the expansion/survival of highly proliferative cell subsets of human T-cell leukemias. Of interest, we found that NOTCH1-dependent EV-miRs mostly comprised members of miR-17-92a cluster and paralogues, which rescued in vitro the proliferation of T-ALL cells blocked by γ-secretase inhibitors (GSI) an regulated a network of genes characterizing patients with relapsed/refractory early T-cell progenitor (ETP) ALLs. All these findings suggest that NOTCH1 dependent EV-miRs may sustain the growth/survival of immunophenotypically defined cell populations, altering the cell heterogeneity and the dynamics of T-cell leukemias in response to conventional therapies.


Assuntos
Vesículas Extracelulares , MicroRNAs , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , MicroRNAs/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Transdução de Sinais , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
8.
Gene ; 838: 146698, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35772651

RESUMO

PURPOSE: The pandemic diffusion of Coronavirus Disease 2019 (COVID-19) has highlighted significant gender-related differences in disease severity. Despite several hypotheses being proposed, how the genetic background of COVID-19 patients might impact clinical outcomes remains largely unknown. METHODS: We collected blood samples from 192 COVID-19 patients (115 men, 77 women, mean age 67 ± 19 years) admitted between March and June 2020 at two different hospital centers in Italy, and determined the allelic distribution of nine Single Nucleotide Polymorphisms (SNPs), located at the 3'Regulatory Region (3'RR)-1 in the immunoglobulin (Ig) heavy chain locus, including *1 and *2 alleles of polymorphic hs1.2 enhancer region. RESULTS: In COVID-19 patients, the genotyped SNPs exhibited strong Linkage Disequilibrium and produced 7 specific haplotypes, associated to different degrees of disease severity, including the occurrence of pneumonia. Additionally, the allele *2, which comprises a DNA binding site for the Estrogen receptor alpha (ERα) in the polymorphic enhancer hs1.2 of 3'RR-1, was significantly enriched in women with a less severe disease. CONCLUSIONS: These findings document genetic variants associated to individual clinical severity of COVID-19 disease. Most specifically, a novel genetic protective factor was identified that might explain the sex-related differences in immune response to Sars-COV-2 infection in humans.


Assuntos
COVID-19 , Idoso , Idoso de 80 Anos ou mais , Alelos , COVID-19/genética , Elementos Facilitadores Genéticos , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/genética
9.
Cytometry B Clin Cytom ; 102(1): 26-33, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33983682

RESUMO

BACKGROUND: Nowadays minimal residual disease (MRD) and log-reduction of leukemic cells are poorly investigated in elderly patients with acute myeloid leukemia (AML) treated with hypometilating agents (HMAs). Studies focusing on MRD in elderly AML patients who received HMAs are scant and devoid of rigorous criteria for both enrollment and monitoring. Log-reduction has never been investigated in these patients. Thus, the purpose of our study was to compare the prognostic impact of MRD and log-reduction of leukemic cells at the optimal time of assessment in older AML patients. METHODS: Elderly patients who completed at least six cycles of HMAs and showed suitable leukemia-associated immunophenotypes (LAIPs) for the MRD and log-reduction assessment by flow cytometry were enrolled in the study. RESULTS: After comparing the times of assessment C4 (4-cycles) and C6 (6-cycles), C6 has been chosen as optimal. Patients who achieved MRD negativity or 2-log-reduction of leukemic cells at C6 had a significantly longer DFS. Particularly, results of 2-log-reduction were confirmed a multivariate analysis. Patients with MRD negativity or 2-log reduction of leukemic cells showed an improvement of their OS, although not significantly. CONCLUSIONS: Our data confirmed the predictive role of MRD and 2-log reduction also in older AML patients treated with HMAs.


Assuntos
Leucemia Mieloide Aguda , Idoso , Citometria de Fluxo/métodos , Testes Hematológicos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Neoplasia Residual/diagnóstico , Neoplasia Residual/tratamento farmacológico , Neoplasia Residual/genética
10.
Biomedicines ; 9(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34440260

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. A foremost risk factor for HCC is obesity/metabolic syndrome-related non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), which is prompted by remarkable changes in transcription patterns of genes enriching metabolic, immune/inflammatory, and circadian pathways. Epigenetic mechanisms play a role in NAFLD-associated HCC, and macroH2A1, a variant of histone H2A, is involved in the pathogenesis modulating the expression of oncogenes and/or tumor suppressor genes and interacting with SIRT1, which crucially impacts the circadian clock circuitry. Hence, we aimed to appraise if and how macroH2A1 regulated the expression patterns of circadian genes in the setting of NAFLD-associated HCC. We took advantage of an in vitro model of liver cancer represented by HepG2 (human hepatocarcinoma) cells stably knocked down for macroH2A1 and conducted whole transcriptome profiling and deep phenotyping analysis. We found up-regulation of PER1 along with several deregulated circadian genes, enriching several important pathways and functions related to cancer onset and progression, such as epithelial-to-mesenchymal transition, cell cycle deregulation, and DNA damage. PER1 silencing partially mitigated the malignant phenotype induced by the loss of macroH2A1 in HCC cells. In conclusion, our findings suggest a modulatory role for the core circadian protein PER1 in liver carcinogenesis in the context of a lack of the macroH2A1 epigenetic and transcriptional landscape.

11.
Cancers (Basel) ; 13(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430292

RESUMO

Protein kinases constitute a large group of enzymes catalysing protein phosphorylation and controlling multiple signalling events. The human protein kinase superfamily consists of 518 members and represents a complicated system with intricate internal and external interactions. Protein kinases are classified into two main families based on the ability to phosphorylate either tyrosine or serine and threonine residues. Among the 90 tyrosine kinase genes, 58 are receptor types classified into 20 groups and 32 are of the nonreceptor types distributed into 10 groups. Tyrosine kinases execute their biological functions by controlling a variety of cellular responses, such as cell division, metabolism, migration, cell-cell and cell matrix adhesion, cell survival and apoptosis. Over the last 30 years, a major focus of research has been directed towards cancer-associated tyrosine kinases owing to their critical contributions to the development and aggressiveness of human malignancies through the pathological effects on cell behaviour. Leukaemia represents a heterogeneous group of haematological malignancies, characterised by an uncontrolled proliferation of undifferentiated hematopoietic cells or leukaemia blasts, mostly derived from bone marrow. They are usually classified as chronic or acute, depending on the rates of their progression, as well as myeloid or lymphoblastic, according to the type of blood cells involved. Overall, these malignancies are relatively common amongst both children and adults. In malignant haematopoiesis, multiple tyrosine kinases of both receptor and nonreceptor types, including AXL receptor tyrosine kinase (AXL), Discoidin domain receptor 1 (DDR1), Vascular endothelial growth factor receptor (VEGFR), Fibroblast growth factor receptor (FGFR), Mesenchymal-epithelial transition factor (MET), proto-oncogene c-Src (SRC), Spleen tyrosine kinase (SYK) and pro-oncogenic Abelson tyrosine-protein kinase 1 (ABL1) mutants, are implicated in the pathogenesis and drug resistance of practically all types of leukaemia. The role of ABL1 kinase mutants and their therapeutic inhibitors have been extensively analysed in scientific literature, and therefore, in this review, we provide insights into the impact and mechanism of action of other tyrosine kinases involved in the development and progression of human leukaemia and discuss the currently available and emerging treatment options based on targeting these molecules.

12.
Cancer Res ; 81(16): 4165-4173, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33414170

RESUMO

The concept that different leukemias are developmentally distinct and, like in normal hematopoiesis, generated by restricted populations of cells named leukemia-initiating cells (LIC), is becoming more established. These cancer stem-like cells have been assumed to have unique properties, including the capability of self-renewing and giving rise to "differentiated" or non-LICs that make up the whole tumor. Cell populations enriched with LIC activity have been characterized in different hematopoietic malignancies, including human acute lymphoblastic leukemia (ALL). Related studies have also demonstrated that LICs are functionally distinct from bulk cells and modulated by distinct molecular signaling pathways and epigenetic mechanisms. Here we review several biological and clinical aspects related to LICs in ALL, including (i) immunophenotypic characterization of LIC-enriched subsets in human and mouse models of ALL, (ii) emerging therapeutics against regulatory signaling pathways involved in LIC progression and maintenance in T- and B-cell leukemias, (iii) novel epigenetic and age-related mechanisms of LIC propagation, and (iv) ongoing efforts in immunotherapy to eradicate LIC-enriched cell subsets in relapsed and refractory ALL cases. Current conventional treatments do not efficiently eliminate LICs. Therefore, innovative therapeutics that exclusively target LICs hold great promise for developing an effective cure for ALL.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia/metabolismo , Células-Tronco Neoplásicas/citologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animais , Linfócitos B/citologia , Modelos Animais de Doenças , Progressão da Doença , Epigênese Genética , Homeostase , Humanos , Imunofenotipagem , Camundongos , Indução de Remissão , Transdução de Sinais , Processos Estocásticos , Linfócitos T/metabolismo
13.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165742, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32105826

RESUMO

Transforming growth factor beta-activated kinase 1 (TAK1) is a highly conserved kinase protein encoded by MAP3K7, and activated by multiple extracellular stimuli, growth factors and cytokines. Heterozygous variants in MAP3K7 cause the cardiospondylocarpofacial syndrome (CSCFS) which is characterized by short stature, dysmorphic facial features, cardiac septal defects with valve dysplasia, and skeletal anomalies. CSCFS has been described in seven patients to date and its molecular pathogenesis is only partially understood. Here, the functional effects of the MAP3K7 c.737-7A > G variant, previously identified in a girl with CSCFS and additional soft connective tissue features, were explored. This splice variant generates an in-frame insertion of 2 amino acid residues in the kinase domain of TAK1. Computational analysis revealed that this in-frame insertion alters protein dynamics in the kinase activation loop responsible for TAK1 autophosphorylation after binding with its interactor TAB1. Co-immunoprecipitation studies demonstrate that the ectopic expression of TAK1-mutated protein impairs its ability to physically bind TAB1. In patient's fibroblasts, MAP3K7 c.737-7A > G variant results in reduced TAK1 autophosphorylation and dysregulation of the downstream TAK1-dependent signaling pathway. TAK1 loss-of-function is associated with an impaired TGFß-mediated α-SMA cytoskeleton assembly and cell migration, and defective autophagy process. These findings contribute to our understanding of the molecular pathogenesis of CSCFS and might offer the rationale for the design of novel therapeutic targets.


Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Autofagia/genética , Perda Auditiva Bilateral/genética , MAP Quinase Quinase Quinases/genética , Insuficiência da Valva Mitral/genética , Osteosclerose/genética , Anormalidades Múltiplas/fisiopatologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Criança , Citoesqueleto/genética , Feminino , Fibroblastos/metabolismo , Perda Auditiva Bilateral/fisiopatologia , Humanos , Mutação com Perda de Função/genética , Insuficiência da Valva Mitral/fisiopatologia , Mutação/genética , Osteosclerose/fisiopatologia , Fosforilação/genética , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética
14.
Cancer Lett ; 473: 98-106, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31904480

RESUMO

The faithful inheritance of chromosomes is essential for the propagation of organisms. In eukaryotes, central to this process is the mitotic spindle. Recently, we have identified TRIM8 as a gene aberrantly expressed in gliomas whose expression reduces the clonogenic potential in the patients' glioma cells. TRIM8 encodes an E3 ubiquitin ligase involved in various pathological processes, including hypertrophy, antiviral defense, encephalopathy, and cancer development. To gain insights into the TRIM8 functions, we characterized the TRIM8 interactome in primary mouse embryonic neural stem cells using proteomics. We found that TRIM8 interacts with KIFC1, and KIF11/Eg5, two master regulators of mitotic spindle assembly and cytoskeleton reorganization. By exploring the TRIM8 role in the mitotic spindle machinery, we showed that TRIM8 localizes at the mitotic spindle during mitosis and plays a role in centrosome separation at the beginning of mitosis with a subsequent delay of the mitotic progression and impact on chromosomal stability.


Assuntos
Proteínas de Transporte/metabolismo , Instabilidade Cromossômica , Cinesinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fuso Acromático/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , beta Carioferinas/metabolismo , Aneuploidia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Embrião de Mamíferos , Fibroblastos , Células HEK293 , Humanos , Camundongos , Micronúcleos com Defeito Cromossômico , Mitose , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais , Cultura Primária de Células , Prometáfase/genética , Ligação Proteica/genética , Proteômica
15.
Cytometry B Clin Cytom ; 98(3): 216-225, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31697027

RESUMO

BACKGROUND: The assessment of minimal residual disease (MRD) by flow cytometry (FC) has a prognostic impact in acute myeloid leukemia (AML), despite the low sensitivity in predicting relapse. Nonetheless, the role of leukemic-associated immunophenotypes (LAIPs)-related specificity on the sensitivity of MRD has not been clarified yet. In this respect, we accomplished this study. METHODS: LAIP-frequencies of bone marrow samples from healthy donors and patients after treatment were quantified and subdivided in "categories of specificity" named as: "strong," "good," and "weak." At the following, the diagnostic performance of MRD was investigated in terms of sensitivity, specificity, predictive values, likelihood ratio (LR). RESULTS: "Strong" LAIPs were identified by CD7, CD2, CD4, and CD56 markers while "weak" LAIPs, independently of coexpressed markers, were mainly observed in CD33+ cells. MRD identified patients with significantly low DFS and OS but showed a low sensitivity in predicting relapse. Interestingly, majority of recurrences was noticed in patients with two LAIPs and lacking of "strong" LAIPs or only with one "good" LAIP. Thus, only patients showing one "strong" or two "good" LAIPs were considered suitable for MRD monitoring and selected to be further investigated. In this subset, positive MRD predicted a poor prognosis. Moreover, a higher sensitivity, negative predictive value (NPV) and LR- were observed after comparison with the previous series. CONCLUSIONS: These data highlight the relevant role of LAIP classification in "categories of specificity" in improving the sensitivity of MRD as assessed by FC.


Assuntos
Citometria de Fluxo/métodos , Imunofenotipagem/métodos , Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/diagnóstico , Adulto , Idoso , Antígenos CD7/imunologia , Medula Óssea/imunologia , Medula Óssea/patologia , Antígenos CD2/imunologia , Antígenos CD4/imunologia , Antígeno CD56/imunologia , Linhagem da Célula/imunologia , Feminino , Voluntários Saudáveis , Humanos , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasia Residual/etiologia , Neoplasia Residual/imunologia , Recidiva , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia
16.
Adv Biol Regul ; 74: 100652, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31543360

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer, characterized by an uncontrolled expansion and accumulation of T-cell progenitors. During leukemic progression, immature T cells grow abnormally and occupy the bone marrow compartment, thereby interfering with the production of normal blood cells. Pediatric T-ALL is curable with intensive chemotherapy, but there are significant, long-term side effects and ~20% of patients suffer relapse for which there are limited treatment options. Adult T-ALL in contrast is largely incurable and refractory/relapsed disease is common despite multi-agent chemotherapy (5-year overall survival of ~40%), and thus new therapeutic targets are needed. We have reported previously on the role of insulin-like growth factor (IGF) signaling in T-ALL, and shown that it exerts potent phenotypes in both leukemia stem cell and bulk tumor cell populations. Modulators of IGF signaling may thus prove useful in improving outcomes in patients with T-ALL. In this review, we summarize the most recent findings relating to IGF signaling in T-ALL and outline therapeutic options using clinically relevant IGF signaling modulators.


Assuntos
Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Transdução de Sinais/genética , Somatomedinas , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Somatomedinas/genética , Somatomedinas/metabolismo
17.
Cytometry B Clin Cytom ; 96(3): 195-200, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30549231

RESUMO

BACKGROUND: Optimization of chemotherapy regimens in the treatment of multiple myeloma (MM) has led to increase the frequency of cases with complete response (CR). Nonetheless, many MM patients still experience relapse, suggesting that CR represents a suboptimal response criteria, and that new therapeutic strategies are needed after single transplant. However, the role of double autologous stem cell transplant (ASCT) as new adjunctive strategy remains to be elucidated. Indeed, we investigated the role of minimal residual disease (MRD) and log-reduction of plasma cells (PCs) as predictors of outcome and in quantifying the degree of tumor reduction after any ASCT. METHODS: MRD and log-reduction were assessed by a six-color flow cytometry (FC) at different time-points: post induction, post first-, and post-second ASCT. RESULTS: A significant difference was evidenced among the three time points for both log-reduction (P < 0.001) and MRD (P = 0.005). MRD levels after double ASCT were lower than MRD levels achieved after single ASCT (P = 0.005) and after induction (P < 0.001). Frequency of MRD positive patients after double ASCT was significantly lower rather than after the first ASCT (P = 0.008) and after induction (P = 0.004). Interestingly, a significant reduction of PFS was observed in patients with an unfavorable-risk cytogenetic (P < 0.001) and patients with MRD over 0.01% (P = 0.001) as well as log-reduction lower than 2.57 (P = 0.018) after double ASCT. CONCLUSIONS: Our results show that a better clearance of myeloma cells is observed after the double ASCT, and a longer PFS is associated with a lower MRD. © 2018 International Clinical Cytometry Society.


Assuntos
Citometria de Fluxo/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/terapia , Plasmócitos/patologia , Idoso , Feminino , Humanos , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Neoplasia Residual , Plasmócitos/imunologia , Prognóstico , Intervalo Livre de Progressão , Recidiva , Transplante Autólogo
18.
Cell Stem Cell ; 23(5): 714-726.e7, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30269902

RESUMO

Acute leukemias are aggressive malignancies of developmentally arrested hematopoietic progenitors. We sought here to explore the possibility that changes in hematopoietic stem/progenitor cells during development might alter the biology of leukemias arising from this tissue compartment. Using a mouse model of acute T cell leukemia, we found that leukemias generated from fetal liver (FL) and adult bone marrow (BM) differed dramatically in their leukemia stem cell activity with FL leukemias showing markedly reduced serial transplantability as compared to BM leukemias. We present evidence that this difference is due to NOTCH1-driven autocrine IGF1 signaling, which is active in FL cells but restrained in BM cells by EZH2-dependent H3K27 trimethylation. Further, we confirmed this mechanism is operative in human disease and show that enforced IGF1 signaling effectively limits leukemia stem cell activity. These findings demonstrate that resurrecting dormant fetal programs in adult cells may represent an alternate therapeutic approach in human cancer.


Assuntos
Células da Medula Óssea/metabolismo , Epigênese Genética/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Células-Tronco Neoplásicas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Transdução de Sinais/genética , Animais , Células da Medula Óssea/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
19.
Exp Hematol ; 64: 84-96, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29733873

RESUMO

RUNX1 is frequently mutated in T-cell acute lymphoblastic leukemia (T-ALL). The spectrum of RUNX1 mutations has led to the notion that it acts as a tumor suppressor in this context; however, other studies have placed RUNX1, along with transcription factors TAL1 and NOTCH1, as core drivers of an oncogenic transcriptional program. To reconcile these divergent roles, we knocked down RUNX1 in human T-ALL cell lines and deleted Runx1 or Cbfb in primary mouse T-cell leukemias. RUNX1 depletion consistently resulted in reduced cell proliferation and increased apoptosis. RUNX1 upregulated variable sets of target genes in each cell line, but consistently included a core set of oncogenic effectors including insulin-like growth factor 1 receptor (IGF1R) and NRAS. Our results support the conclusion that RUNX1 has a net positive effect on cell growth in the context of established T-ALL.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Regulação Leucêmica da Expressão Gênica/genética , Proteínas de Neoplasias/fisiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Animais , Divisão Celular , Linhagem Celular Tumoral , Tamanho Celular , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/deficiência , Subunidade beta de Fator de Ligação ao Core/genética , Deleção de Genes , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Leucemia Experimental/genética , Leucemia Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Transcrição Gênica , Transcriptoma , Carga Tumoral
20.
PLoS One ; 11(8): e0161158, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27532210

RESUMO

Insulin-like growth factor 1 receptor (IGF1R) is a prevalent signaling pathway in human cancer that supports cell growth/survival and thus contributes to aggressive biological behavior. Much work has gone into development of IGF1R inhibitors; however, candidate agents including small molecule tyrosine kinase inhibitors and blocking antibodies have yet to fulfill their promise clinically. Understanding cellular features that define sensitivity versus resistance are important for effective patient selection and anticipation of outgrowth of a resistant clone. We previously identified an important role for IGF signaling in T-cell acute lymphoblastic leukemia (T-ALL) relying primarily upon genetically defined mouse models. We present here an assessment of IGF1R dependence in human T-ALL using a broad panel of 27 established cell lines that capture a spectrum of the genetic variation that might be encountered in clinical practice. We observed that a subset of cell lines are sensitive to IGF1R inhibition and are characterized by high levels of surface IGF1R expression and PTEN positivity. Interestingly, lentiviral expression or knock-down of PTEN in PTEN-negative/positive cell lines, respectively, had limited effects on their response to IGF1R inhibition, suggesting that PTEN contributes to, but does not define IGF dependence. Additionally, we characterize downstream PI3K/AKT signaling as dominant over RAS/RAF/MEK/ERK in mediating growth and/or survival in this context. Finally, we demonstrate that IGF and interleukin-7 (IL-7) fulfill non-overlapping roles in supporting T-ALL growth. These findings are significant in that they reveal cellular features and downstream mechanisms that may determine the response of an individual patient's tumor to IGF1R inhibitor therapy.


Assuntos
PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Dioxóis/farmacologia , Humanos , Interleucina-7/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Pirazóis/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Tiazolidinedionas/farmacologia , Triazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA